碳基复合材料的结构优化和电催化制氢性能:微型综述

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Carbon Trends Pub Date : 2024-06-01 DOI:10.1016/j.cartre.2024.100363
Yixuan Huang, Mengyao Li, Tianyue Liang, Yingze Zhou, Peiyuan Guan, Lu Zhou, Long Hu, Tao Wan, Dewei Chu
{"title":"碳基复合材料的结构优化和电催化制氢性能:微型综述","authors":"Yixuan Huang,&nbsp;Mengyao Li,&nbsp;Tianyue Liang,&nbsp;Yingze Zhou,&nbsp;Peiyuan Guan,&nbsp;Lu Zhou,&nbsp;Long Hu,&nbsp;Tao Wan,&nbsp;Dewei Chu","doi":"10.1016/j.cartre.2024.100363","DOIUrl":null,"url":null,"abstract":"<div><p>The energy demand has increased significantly in recent years and it is urgent to develop a renewable energy system that is highly efficient and non-noble metal-based. Hydrogen energy is an environmentally friendly energy source with abundant resources, which can be used to solve the problem of high energy demand without greenhouse gas emissions. However, the development of catalysts for hydrogen production technology by electrolysis of water is slow, mainly due to the complexity of the electrolysis hydrogen generation process, low hydrogen production efficiency, weak electrode material activity and high cost. Among the non-noble metal-based catalysts, carbon-based materials have high conductivity, tunable chemical bonding, and easily modified morphology, making them beneficial to achieving efficient hydrogen production, though pure carbon composites suffer from few surface-active sites and unmoderated hydrogen bonding energy, which need to be further optimized. The principle of electrocatalytic hydrogen production from the perspectives of reaction thermodynamics and kinetics is analyzed and discussed in this paper. Thermodynamics of electrocatalytic hydrogen production is reflected by the Gibbs free energy of hydrogen adsorption (ΔG<sub>H</sub>*) and electrode potential (E). Reaction kinetics of the electrocatalytic hydrogen production process are reflected by overpotential, Tafel slope and exchange current density. Structural optimization methods of carbon-based composite materials and hydrogen production performance after structural optimization are also summarized. Structural optimization methods of carbon-based composite materials mainly include introducing active sites, improving conductivity, increasing specific surface area and introducing self-supporting materials. Finally, prospects are proposed for the development direction and existing problems of electrocatalytic hydrogen production performance of carbon-based composites.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"15 ","pages":"Article 100363"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000440/pdfft?md5=02b7b6a8256129805f74ee762a8aa5a8&pid=1-s2.0-S2667056924000440-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural optimization and electrocatalytic hydrogen production performance of carbon-based composites: A mini-review\",\"authors\":\"Yixuan Huang,&nbsp;Mengyao Li,&nbsp;Tianyue Liang,&nbsp;Yingze Zhou,&nbsp;Peiyuan Guan,&nbsp;Lu Zhou,&nbsp;Long Hu,&nbsp;Tao Wan,&nbsp;Dewei Chu\",\"doi\":\"10.1016/j.cartre.2024.100363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The energy demand has increased significantly in recent years and it is urgent to develop a renewable energy system that is highly efficient and non-noble metal-based. Hydrogen energy is an environmentally friendly energy source with abundant resources, which can be used to solve the problem of high energy demand without greenhouse gas emissions. However, the development of catalysts for hydrogen production technology by electrolysis of water is slow, mainly due to the complexity of the electrolysis hydrogen generation process, low hydrogen production efficiency, weak electrode material activity and high cost. Among the non-noble metal-based catalysts, carbon-based materials have high conductivity, tunable chemical bonding, and easily modified morphology, making them beneficial to achieving efficient hydrogen production, though pure carbon composites suffer from few surface-active sites and unmoderated hydrogen bonding energy, which need to be further optimized. The principle of electrocatalytic hydrogen production from the perspectives of reaction thermodynamics and kinetics is analyzed and discussed in this paper. Thermodynamics of electrocatalytic hydrogen production is reflected by the Gibbs free energy of hydrogen adsorption (ΔG<sub>H</sub>*) and electrode potential (E). Reaction kinetics of the electrocatalytic hydrogen production process are reflected by overpotential, Tafel slope and exchange current density. Structural optimization methods of carbon-based composite materials and hydrogen production performance after structural optimization are also summarized. Structural optimization methods of carbon-based composite materials mainly include introducing active sites, improving conductivity, increasing specific surface area and introducing self-supporting materials. Finally, prospects are proposed for the development direction and existing problems of electrocatalytic hydrogen production performance of carbon-based composites.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"15 \",\"pages\":\"Article 100363\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000440/pdfft?md5=02b7b6a8256129805f74ee762a8aa5a8&pid=1-s2.0-S2667056924000440-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,能源需求大幅增加,迫切需要开发一种高效且不含贵金属的可再生能源系统。氢能是一种资源丰富的环保能源,可以在不排放温室气体的情况下解决能源需求大的问题。然而,电解水制氢技术催化剂发展缓慢,主要原因是电解水制氢工艺复杂、制氢效率低、电极材料活性弱、成本高。在非贵金属基催化剂中,碳基材料具有高导电性、化学键可调控、形貌易修饰等特点,有利于实现高效制氢,但纯碳复合材料存在表面活性位点少、氢键能未调控等问题,有待进一步优化。本文从反应热力学和动力学的角度分析和讨论了电催化制氢的原理。电催化制氢的热力学由氢吸附的吉布斯自由能(ΔGH*)和电极电位(E)反映。电催化制氢过程的反应动力学由过电位、塔菲尔斜率和交换电流密度反映。此外,还总结了碳基复合材料的结构优化方法和结构优化后的制氢性能。碳基复合材料的结构优化方法主要包括引入活性位点、提高导电性、增加比表面积和引入自支撑材料。最后,对碳基复合材料电催化制氢性能的发展方向和存在的问题进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural optimization and electrocatalytic hydrogen production performance of carbon-based composites: A mini-review

The energy demand has increased significantly in recent years and it is urgent to develop a renewable energy system that is highly efficient and non-noble metal-based. Hydrogen energy is an environmentally friendly energy source with abundant resources, which can be used to solve the problem of high energy demand without greenhouse gas emissions. However, the development of catalysts for hydrogen production technology by electrolysis of water is slow, mainly due to the complexity of the electrolysis hydrogen generation process, low hydrogen production efficiency, weak electrode material activity and high cost. Among the non-noble metal-based catalysts, carbon-based materials have high conductivity, tunable chemical bonding, and easily modified morphology, making them beneficial to achieving efficient hydrogen production, though pure carbon composites suffer from few surface-active sites and unmoderated hydrogen bonding energy, which need to be further optimized. The principle of electrocatalytic hydrogen production from the perspectives of reaction thermodynamics and kinetics is analyzed and discussed in this paper. Thermodynamics of electrocatalytic hydrogen production is reflected by the Gibbs free energy of hydrogen adsorption (ΔGH*) and electrode potential (E). Reaction kinetics of the electrocatalytic hydrogen production process are reflected by overpotential, Tafel slope and exchange current density. Structural optimization methods of carbon-based composite materials and hydrogen production performance after structural optimization are also summarized. Structural optimization methods of carbon-based composite materials mainly include introducing active sites, improving conductivity, increasing specific surface area and introducing self-supporting materials. Finally, prospects are proposed for the development direction and existing problems of electrocatalytic hydrogen production performance of carbon-based composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
期刊最新文献
Mechanistic insight into the catalytic activities of metallic sites on nitrogen-doped graphene quantum dots for CO2 hydrogenation Fe-based catalytic modification of a birch sawdust-based carbon structure: The effect of process parameters on the final product using an experimental design Evaluation of morphological, structural, thermal, electrical, and chemical composition properties of graphene oxide, and reduced graphene oxide obtained by sequential reduction methods Eco and user–friendly curcumin based nanocomposite forensic powder from coal fly ash for latent fingerprint detection in crime scenes Reduced thermal conductivity of constricted graphene nanoribbons for thermoelectric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1