{"title":"用于时间序列可解释分类的最优小形树","authors":"Lorenzo Bonasera, Stefano Gualandi","doi":"10.1016/j.ejco.2024.100091","DOIUrl":null,"url":null,"abstract":"<div><p>Time series shapelets are a state-of-the-art data mining technique that is applied to time series supervised classification tasks. Shapelets are defined as subsequences that retain the most discriminating power contained in time series. The main advantage of shapelets-based methods consists of their great interpretability. Indeed, shapelets can provide the end-user with very helpful insights about the most interesting subsequences. In this paper, we propose a novel Mixed-Integer Programming model to optimize shapelets discovery based on optimal binary decision trees. Our formulation provides a flexible and adaptable classification framework that is interpretable with respect to both the mathematical model and the final output. Computational results for a large class of datasets show that our approach achieves performance comparable with state-of-the-art shapelets-based classification methods. Our model is the first approach based on optimal decision tree induction for time series classification.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"12 ","pages":"Article 100091"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S219244062400008X/pdfft?md5=b14d7b43a7e4b626d023b6162ce84dcf&pid=1-s2.0-S219244062400008X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal shapelets tree for time series interpretable classification\",\"authors\":\"Lorenzo Bonasera, Stefano Gualandi\",\"doi\":\"10.1016/j.ejco.2024.100091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Time series shapelets are a state-of-the-art data mining technique that is applied to time series supervised classification tasks. Shapelets are defined as subsequences that retain the most discriminating power contained in time series. The main advantage of shapelets-based methods consists of their great interpretability. Indeed, shapelets can provide the end-user with very helpful insights about the most interesting subsequences. In this paper, we propose a novel Mixed-Integer Programming model to optimize shapelets discovery based on optimal binary decision trees. Our formulation provides a flexible and adaptable classification framework that is interpretable with respect to both the mathematical model and the final output. Computational results for a large class of datasets show that our approach achieves performance comparable with state-of-the-art shapelets-based classification methods. Our model is the first approach based on optimal decision tree induction for time series classification.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"12 \",\"pages\":\"Article 100091\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S219244062400008X/pdfft?md5=b14d7b43a7e4b626d023b6162ce84dcf&pid=1-s2.0-S219244062400008X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S219244062400008X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S219244062400008X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Optimal shapelets tree for time series interpretable classification
Time series shapelets are a state-of-the-art data mining technique that is applied to time series supervised classification tasks. Shapelets are defined as subsequences that retain the most discriminating power contained in time series. The main advantage of shapelets-based methods consists of their great interpretability. Indeed, shapelets can provide the end-user with very helpful insights about the most interesting subsequences. In this paper, we propose a novel Mixed-Integer Programming model to optimize shapelets discovery based on optimal binary decision trees. Our formulation provides a flexible and adaptable classification framework that is interpretable with respect to both the mathematical model and the final output. Computational results for a large class of datasets show that our approach achieves performance comparable with state-of-the-art shapelets-based classification methods. Our model is the first approach based on optimal decision tree induction for time series classification.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.