探索假苷酸化:疾病中的失调与治疗潜力

IF 3.7 2区 生物学 Q2 CELL BIOLOGY Current Opinion in Genetics & Development Pub Date : 2024-06-03 DOI:10.1016/j.gde.2024.102210
Maria Guillen-Angel , Jean-Yves Roignant
{"title":"探索假苷酸化:疾病中的失调与治疗潜力","authors":"Maria Guillen-Angel ,&nbsp;Jean-Yves Roignant","doi":"10.1016/j.gde.2024.102210","DOIUrl":null,"url":null,"abstract":"<div><p>Pseudouridine (Ψ), the most abundant RNA modification, plays a role in pre-mRNA splicing, RNA stability, protein translation efficiency, and cellular responses to environmental stress. Dysregulation of pseudouridylation is linked to human diseases. This review explores recent insights into the role of RNA pseudouridylation alterations in human disorders and the therapeutic potential of Ψ. We discuss the impact of the reduction of Ψ levels in ribosomal, messenger, and transfer RNA in RNA processing, protein translation, and consequently its role in neurodevelopmental diseases and cancer. Furthermore, we review the success of N1-methyl-Ψ messenger RNA vaccines against COVID-19 and the development of RNA-guided pseudouridylation enzymes for treating genetic diseases caused by premature stop codons.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000595/pdfft?md5=fcabdf580120488af4c595d5ccc4e7c3&pid=1-s2.0-S0959437X24000595-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring pseudouridylation: dysregulation in disease and therapeutic potential\",\"authors\":\"Maria Guillen-Angel ,&nbsp;Jean-Yves Roignant\",\"doi\":\"10.1016/j.gde.2024.102210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pseudouridine (Ψ), the most abundant RNA modification, plays a role in pre-mRNA splicing, RNA stability, protein translation efficiency, and cellular responses to environmental stress. Dysregulation of pseudouridylation is linked to human diseases. This review explores recent insights into the role of RNA pseudouridylation alterations in human disorders and the therapeutic potential of Ψ. We discuss the impact of the reduction of Ψ levels in ribosomal, messenger, and transfer RNA in RNA processing, protein translation, and consequently its role in neurodevelopmental diseases and cancer. Furthermore, we review the success of N1-methyl-Ψ messenger RNA vaccines against COVID-19 and the development of RNA-guided pseudouridylation enzymes for treating genetic diseases caused by premature stop codons.</p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000595/pdfft?md5=fcabdf580120488af4c595d5ccc4e7c3&pid=1-s2.0-S0959437X24000595-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000595\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000595","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

假尿苷(Ψ)是最丰富的 RNA 修饰,在前核糖核酸剪接、RNA 稳定性、蛋白质翻译效率以及细胞对环境压力的反应中发挥作用。假酸化失调与人类疾病有关。这篇综述探讨了 RNA 伪酸化改变在人类疾病中的作用以及Ψ 的治疗潜力。我们讨论了核糖体、信使和转运 RNA 中的Ψ 水平降低对 RNA 处理和蛋白质翻译的影响,以及Ψ 在神经发育疾病和癌症中的作用。此外,我们还回顾了针对 COVID-19 的 N1-甲基Ψ信使 RNA 疫苗的成功,以及 RNA 引导的假酰化酶用于治疗过早终止密码子引起的遗传疾病的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring pseudouridylation: dysregulation in disease and therapeutic potential

Pseudouridine (Ψ), the most abundant RNA modification, plays a role in pre-mRNA splicing, RNA stability, protein translation efficiency, and cellular responses to environmental stress. Dysregulation of pseudouridylation is linked to human diseases. This review explores recent insights into the role of RNA pseudouridylation alterations in human disorders and the therapeutic potential of Ψ. We discuss the impact of the reduction of Ψ levels in ribosomal, messenger, and transfer RNA in RNA processing, protein translation, and consequently its role in neurodevelopmental diseases and cancer. Furthermore, we review the success of N1-methyl-Ψ messenger RNA vaccines against COVID-19 and the development of RNA-guided pseudouridylation enzymes for treating genetic diseases caused by premature stop codons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
期刊最新文献
Engineering immune organoids to regenerate host immune system Better together: how cooperativity influences transcriptional bursting Strategies for programmable manipulation of alternative splicing Editorial overview: Epitranscriptomics: Exploring a new frontier in health and disease Emerging interactions between RNA methylation and chromatin architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1