{"title":"探索假苷酸化:疾病中的失调与治疗潜力","authors":"Maria Guillen-Angel , Jean-Yves Roignant","doi":"10.1016/j.gde.2024.102210","DOIUrl":null,"url":null,"abstract":"<div><p>Pseudouridine (Ψ), the most abundant RNA modification, plays a role in pre-mRNA splicing, RNA stability, protein translation efficiency, and cellular responses to environmental stress. Dysregulation of pseudouridylation is linked to human diseases. This review explores recent insights into the role of RNA pseudouridylation alterations in human disorders and the therapeutic potential of Ψ. We discuss the impact of the reduction of Ψ levels in ribosomal, messenger, and transfer RNA in RNA processing, protein translation, and consequently its role in neurodevelopmental diseases and cancer. Furthermore, we review the success of N1-methyl-Ψ messenger RNA vaccines against COVID-19 and the development of RNA-guided pseudouridylation enzymes for treating genetic diseases caused by premature stop codons.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959437X24000595/pdfft?md5=fcabdf580120488af4c595d5ccc4e7c3&pid=1-s2.0-S0959437X24000595-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exploring pseudouridylation: dysregulation in disease and therapeutic potential\",\"authors\":\"Maria Guillen-Angel , Jean-Yves Roignant\",\"doi\":\"10.1016/j.gde.2024.102210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pseudouridine (Ψ), the most abundant RNA modification, plays a role in pre-mRNA splicing, RNA stability, protein translation efficiency, and cellular responses to environmental stress. Dysregulation of pseudouridylation is linked to human diseases. This review explores recent insights into the role of RNA pseudouridylation alterations in human disorders and the therapeutic potential of Ψ. We discuss the impact of the reduction of Ψ levels in ribosomal, messenger, and transfer RNA in RNA processing, protein translation, and consequently its role in neurodevelopmental diseases and cancer. Furthermore, we review the success of N1-methyl-Ψ messenger RNA vaccines against COVID-19 and the development of RNA-guided pseudouridylation enzymes for treating genetic diseases caused by premature stop codons.</p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000595/pdfft?md5=fcabdf580120488af4c595d5ccc4e7c3&pid=1-s2.0-S0959437X24000595-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000595\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000595","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Exploring pseudouridylation: dysregulation in disease and therapeutic potential
Pseudouridine (Ψ), the most abundant RNA modification, plays a role in pre-mRNA splicing, RNA stability, protein translation efficiency, and cellular responses to environmental stress. Dysregulation of pseudouridylation is linked to human diseases. This review explores recent insights into the role of RNA pseudouridylation alterations in human disorders and the therapeutic potential of Ψ. We discuss the impact of the reduction of Ψ levels in ribosomal, messenger, and transfer RNA in RNA processing, protein translation, and consequently its role in neurodevelopmental diseases and cancer. Furthermore, we review the success of N1-methyl-Ψ messenger RNA vaccines against COVID-19 and the development of RNA-guided pseudouridylation enzymes for treating genetic diseases caused by premature stop codons.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)