Open-AMA:用于气团统计分析的开源软件

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Geosciences Pub Date : 2024-05-27 DOI:10.1016/j.cageo.2024.105627
Abdelhamid Nouayti , E. Chham , I. Berriban , M. Azahra , Mohamed Drissi El-Bouzaidi , J.A.G. Orza , M. Hadouachi , T. El Ghalbzouri , T. El Bardouni , H. El Yaakoubi , M.A. Ferro-García
{"title":"Open-AMA:用于气团统计分析的开源软件","authors":"Abdelhamid Nouayti ,&nbsp;E. Chham ,&nbsp;I. Berriban ,&nbsp;M. Azahra ,&nbsp;Mohamed Drissi El-Bouzaidi ,&nbsp;J.A.G. Orza ,&nbsp;M. Hadouachi ,&nbsp;T. El Ghalbzouri ,&nbsp;T. El Bardouni ,&nbsp;H. El Yaakoubi ,&nbsp;M.A. Ferro-García","doi":"10.1016/j.cageo.2024.105627","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a new open-source software “Open-AMA” developed to investigate atmospheric circulation dynamics and environmental research. Open AMA presents an integral package to conduct several air mass analyses. It appears to be a powerful, versatile software package developed to meet the needs of researchers using python and C++ in order to facilitate and speed up working time. This software seamlessly integrates new models for source identification based on air trajectories and ambient air pollution concentration data and enhances certain existing ones. Beyond source identification, it offers a rich array of functionalities for making it automatic, quick and easy to get access many kinds data including gridded meteorological data, trajectory calculations, synoptic parameter extraction from back-trajectories. All this functionalities can be used through a user-friendly graphical interface. Open-AMA can be a significant leap forward in air quality research and analysis, empowering researchers with the tools they need to make informed decisions and address pressing environmental and public health challenges and enhance understanding of pollutant origins in the atmosphere.</p></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"189 ","pages":"Article 105627"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Open-AMA: Open-source software for air masses statistical analysis\",\"authors\":\"Abdelhamid Nouayti ,&nbsp;E. Chham ,&nbsp;I. Berriban ,&nbsp;M. Azahra ,&nbsp;Mohamed Drissi El-Bouzaidi ,&nbsp;J.A.G. Orza ,&nbsp;M. Hadouachi ,&nbsp;T. El Ghalbzouri ,&nbsp;T. El Bardouni ,&nbsp;H. El Yaakoubi ,&nbsp;M.A. Ferro-García\",\"doi\":\"10.1016/j.cageo.2024.105627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a new open-source software “Open-AMA” developed to investigate atmospheric circulation dynamics and environmental research. Open AMA presents an integral package to conduct several air mass analyses. It appears to be a powerful, versatile software package developed to meet the needs of researchers using python and C++ in order to facilitate and speed up working time. This software seamlessly integrates new models for source identification based on air trajectories and ambient air pollution concentration data and enhances certain existing ones. Beyond source identification, it offers a rich array of functionalities for making it automatic, quick and easy to get access many kinds data including gridded meteorological data, trajectory calculations, synoptic parameter extraction from back-trajectories. All this functionalities can be used through a user-friendly graphical interface. Open-AMA can be a significant leap forward in air quality research and analysis, empowering researchers with the tools they need to make informed decisions and address pressing environmental and public health challenges and enhance understanding of pollutant origins in the atmosphere.</p></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"189 \",\"pages\":\"Article 105627\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424001109\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424001109","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了一个新的开源软件 "Open-AMA",该软件是为研究大气环流动力学和环境研究而开发的。Open AMA 是一个用于进行多项气团分析的完整软件包。它似乎是一个功能强大、用途广泛的软件包,使用 python 和 C++ 来满足研究人员的需求,以方便和加快工作时间。该软件无缝集成了基于空气轨迹和环境空气污染浓度数据的新污染源识别模型,并增强了某些现有模型。除污染源识别外,该软件还提供了丰富的功能,可自动、快速、方便地获取多种数据,包括网格气象数据、轨迹计算、从回溯轨迹中提取同步参数等。所有这些功能都可以通过用户友好的图形界面使用。Open-AMA 可以成为空气质量研究和分析领域的一次重大飞跃,为研究人员提供所需的工具,使他们能够做出明智的决策,应对紧迫的环境和公共卫生挑战,并加深对大气中污染物来源的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Open-AMA: Open-source software for air masses statistical analysis

In this paper, we present a new open-source software “Open-AMA” developed to investigate atmospheric circulation dynamics and environmental research. Open AMA presents an integral package to conduct several air mass analyses. It appears to be a powerful, versatile software package developed to meet the needs of researchers using python and C++ in order to facilitate and speed up working time. This software seamlessly integrates new models for source identification based on air trajectories and ambient air pollution concentration data and enhances certain existing ones. Beyond source identification, it offers a rich array of functionalities for making it automatic, quick and easy to get access many kinds data including gridded meteorological data, trajectory calculations, synoptic parameter extraction from back-trajectories. All this functionalities can be used through a user-friendly graphical interface. Open-AMA can be a significant leap forward in air quality research and analysis, empowering researchers with the tools they need to make informed decisions and address pressing environmental and public health challenges and enhance understanding of pollutant origins in the atmosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
期刊最新文献
Multimodal feature integration network for lithology identification from point cloud data A two-dimensional magnetotelluric deep learning inversion approach based on improved Dense Convolutional Network Removing atmospheric noise from InSAR interferograms in mountainous regions with a convolutional neural network Novel empirical curvelet denoising strategy for suppressing mixed noise of microseismic data Curvilinear lineament extraction: Bayesian optimization of Principal Component Wavelet Analysis and Hysteresis Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1