四丁基溴化铵-羧酸基深共晶溶剂的综合实验和计算研究

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of molecular graphics & modelling Pub Date : 2024-05-31 DOI:10.1016/j.jmgm.2024.108805
Sahar Shokri, Nosaibah Ebrahimi, Rahmat Sadeghi
{"title":"四丁基溴化铵-羧酸基深共晶溶剂的综合实验和计算研究","authors":"Sahar Shokri,&nbsp;Nosaibah Ebrahimi,&nbsp;Rahmat Sadeghi","doi":"10.1016/j.jmgm.2024.108805","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming at shedding light on the molecular interactions in deep eutectic solvents (DESs), the DESs based on tetrabutylammonium bromide (TBAB) as hydrogen bond acceptor (HBA) and carboxylic acids (CAs) (formic acid (FA), oxalic acid (OA), and malonic acid (MA)) as hydrogen bond donor (HBD) were investigated by both experimental and theoretical techniques. The thermal behaviors of the prepared DESs were investigated by differential scanning calorimetry (DSC) method. In order to study the hydrogen bond formation between the DESs constituents, the FT-IR analysis was carried out. The large positive deviations of the iso solvent activity lines of ternary HBA + HBD + 2-propanol mixtures determined by the isopiestic technique from the semi-ideal behavior indicate that CAs interact strongly with TBAB and therefore they can form DESs. Molecular dynamics (MD) simulations were performed to present an atomic-scale image of the components and describe the microstructure of DESs. From the MD simulations, the radial distribution functions (RDFs), coordination numbers (CNs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) were calculated to investigate the interaction between the components and three-dimensional visualization of the DESs. The obtained results confirmed the importance of hydrogen bonds in the formation of TBAB/CAs DESs.</p></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"131 ","pages":"Article 108805"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined experimental and computational investigation of tetrabutylammonium bromide-carboxylic acid-based deep eutectic solvents\",\"authors\":\"Sahar Shokri,&nbsp;Nosaibah Ebrahimi,&nbsp;Rahmat Sadeghi\",\"doi\":\"10.1016/j.jmgm.2024.108805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aiming at shedding light on the molecular interactions in deep eutectic solvents (DESs), the DESs based on tetrabutylammonium bromide (TBAB) as hydrogen bond acceptor (HBA) and carboxylic acids (CAs) (formic acid (FA), oxalic acid (OA), and malonic acid (MA)) as hydrogen bond donor (HBD) were investigated by both experimental and theoretical techniques. The thermal behaviors of the prepared DESs were investigated by differential scanning calorimetry (DSC) method. In order to study the hydrogen bond formation between the DESs constituents, the FT-IR analysis was carried out. The large positive deviations of the iso solvent activity lines of ternary HBA + HBD + 2-propanol mixtures determined by the isopiestic technique from the semi-ideal behavior indicate that CAs interact strongly with TBAB and therefore they can form DESs. Molecular dynamics (MD) simulations were performed to present an atomic-scale image of the components and describe the microstructure of DESs. From the MD simulations, the radial distribution functions (RDFs), coordination numbers (CNs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) were calculated to investigate the interaction between the components and three-dimensional visualization of the DESs. The obtained results confirmed the importance of hydrogen bonds in the formation of TBAB/CAs DESs.</p></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"131 \",\"pages\":\"Article 108805\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326324001050\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326324001050","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

为了揭示深共晶溶剂(DES)中的分子相互作用,研究人员利用实验和理论技术研究了以四丁基溴化铵(TBAB)为氢键接受体(HBA)、以羧酸(CA)(甲酸(FA)、草酸(OA)和丙二酸(MA))为氢键供体(HBD)的DES。采用差示扫描量热法(DSC)研究了制备的 DESs 的热行为。为了研究 DESs 成分之间氢键的形成,还进行了傅立叶变换红外分析。用等压法测定的 HBA + HBD + 2 丙醇三元混合物的等溶剂活性线与半理想行为有很大的正偏差,这表明 CAs 与 TBAB 的相互作用很强,因此它们可以形成 DESs。分子动力学(MD)模拟展示了各组分的原子尺度图像,并描述了 DESs 的微观结构。通过 MD 模拟,计算了径向分布函数 (RDF)、配位数 (CN)、组合分布函数 (CDF) 和空间分布函数 (SDF),以研究各组分之间的相互作用和 DESs 的三维可视化。所得结果证实了氢键在 TBAB/CAs DESs 形成过程中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined experimental and computational investigation of tetrabutylammonium bromide-carboxylic acid-based deep eutectic solvents

Aiming at shedding light on the molecular interactions in deep eutectic solvents (DESs), the DESs based on tetrabutylammonium bromide (TBAB) as hydrogen bond acceptor (HBA) and carboxylic acids (CAs) (formic acid (FA), oxalic acid (OA), and malonic acid (MA)) as hydrogen bond donor (HBD) were investigated by both experimental and theoretical techniques. The thermal behaviors of the prepared DESs were investigated by differential scanning calorimetry (DSC) method. In order to study the hydrogen bond formation between the DESs constituents, the FT-IR analysis was carried out. The large positive deviations of the iso solvent activity lines of ternary HBA + HBD + 2-propanol mixtures determined by the isopiestic technique from the semi-ideal behavior indicate that CAs interact strongly with TBAB and therefore they can form DESs. Molecular dynamics (MD) simulations were performed to present an atomic-scale image of the components and describe the microstructure of DESs. From the MD simulations, the radial distribution functions (RDFs), coordination numbers (CNs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) were calculated to investigate the interaction between the components and three-dimensional visualization of the DESs. The obtained results confirmed the importance of hydrogen bonds in the formation of TBAB/CAs DESs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
期刊最新文献
Dispersion-corrected DFT calculations and dynamic molecular simulations to investigate conformational stability of Lidocaine towards β-CD and HP-β-CD. Recent advancements in mechanical properties of graphene-enhanced polymer nanocomposites: Progress, challenges, and pathways forward. Estimating AChE inhibitors from MCE database by machine learning and atomistic calculations. Effects of carbon nanotube and alumina doping on the properties of para-aramids: A DFT and molecular dynamics study. Exploring the interaction between Fe3+ and REGLE motif of the high-affinity iron permease (Ftr1): An in silico approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1