用于三尖瓣经导管边缘到边缘修复术的 3D 打印训练模拟器:概念验证

Michele Bertolini , Luca Carlini , Ludovica Clementini , Martina Dall'Aglio , Giorgio Colombo , Claudio Capelli
{"title":"用于三尖瓣经导管边缘到边缘修复术的 3D 打印训练模拟器:概念验证","authors":"Michele Bertolini ,&nbsp;Luca Carlini ,&nbsp;Ludovica Clementini ,&nbsp;Martina Dall'Aglio ,&nbsp;Giorgio Colombo ,&nbsp;Claudio Capelli","doi":"10.1016/j.stlm.2024.100157","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Tricuspid regurgitation (TR) treatments have gradually shifted toward a more interventional approach and transcatheter edge-to-edge repair (TEER) has assumed a first-order role. TriClip™ by Abbott (Menlo Park, USA) is one of the most widely used devices for tricuspid repair. TEER procedures are recognised as technically challenging, characterized by a steep learning curve. For this reason, specialized training is necessary. The aim of this work is to develop and test a novel 3D printed training simulator, which considers both anatomical and mechanical characteristics, specifically designed for this kind of procedure.</p></div><div><h3>Methods</h3><p>Starting from routinely acquired computed tomography (CT) images, a 3D digital model of the heart was reconstructed. This was then properly “augmented”, so that it could realistically reproduce the key features involved in the procedure. The simulator was manufactured exploiting the Polyjet 3D printed. Proper materials selection was performed to accurately reproduce mechanical properties. The manufactured prototype was then tested by a specialized professional, with the TriClip™ system.</p></div><div><h3>Results</h3><p>The simulator was assessed to practice access, navigation, catheter steering and leaflet grasping. Throughout the process, appropriately placed cameras ensured that the operators could visualize the crucial steps on a screen. Even if a deeper evaluation is needed, preliminary feedback is satisfactory.</p></div><div><h3>Conclusions</h3><p>In this study, a new training simulator for TriClip™ procedure was designed, produced, and preliminary assessed. Further studies will have to demonstrate the advantages of using this simulator design to shorten the learning curve and subsequently lead to better clinical outcomes.</p></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266696412400016X/pdfft?md5=3cf2a06a694469b1e96d97c5152312b3&pid=1-s2.0-S266696412400016X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"3D printed training simulator for transcatheter edge-to-edge repair of the tricuspid valve: A proof-of-concept\",\"authors\":\"Michele Bertolini ,&nbsp;Luca Carlini ,&nbsp;Ludovica Clementini ,&nbsp;Martina Dall'Aglio ,&nbsp;Giorgio Colombo ,&nbsp;Claudio Capelli\",\"doi\":\"10.1016/j.stlm.2024.100157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Tricuspid regurgitation (TR) treatments have gradually shifted toward a more interventional approach and transcatheter edge-to-edge repair (TEER) has assumed a first-order role. TriClip™ by Abbott (Menlo Park, USA) is one of the most widely used devices for tricuspid repair. TEER procedures are recognised as technically challenging, characterized by a steep learning curve. For this reason, specialized training is necessary. The aim of this work is to develop and test a novel 3D printed training simulator, which considers both anatomical and mechanical characteristics, specifically designed for this kind of procedure.</p></div><div><h3>Methods</h3><p>Starting from routinely acquired computed tomography (CT) images, a 3D digital model of the heart was reconstructed. This was then properly “augmented”, so that it could realistically reproduce the key features involved in the procedure. The simulator was manufactured exploiting the Polyjet 3D printed. Proper materials selection was performed to accurately reproduce mechanical properties. The manufactured prototype was then tested by a specialized professional, with the TriClip™ system.</p></div><div><h3>Results</h3><p>The simulator was assessed to practice access, navigation, catheter steering and leaflet grasping. Throughout the process, appropriately placed cameras ensured that the operators could visualize the crucial steps on a screen. Even if a deeper evaluation is needed, preliminary feedback is satisfactory.</p></div><div><h3>Conclusions</h3><p>In this study, a new training simulator for TriClip™ procedure was designed, produced, and preliminary assessed. Further studies will have to demonstrate the advantages of using this simulator design to shorten the learning curve and subsequently lead to better clinical outcomes.</p></div>\",\"PeriodicalId\":72210,\"journal\":{\"name\":\"Annals of 3D printed medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266696412400016X/pdfft?md5=3cf2a06a694469b1e96d97c5152312b3&pid=1-s2.0-S266696412400016X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of 3D printed medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266696412400016X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266696412400016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

背景三尖瓣反流(TR)治疗已逐渐转向更多的介入方法,而经导管边缘到边缘修补术(TEER)已占据首要地位。雅培公司(美国门洛帕克)生产的 TriClip™ 是最广泛使用的三尖瓣修复设备之一。TEER 手术被认为具有技术挑战性,学习曲线陡峭。因此,有必要进行专门培训。这项工作的目的是开发和测试一种新颖的 3D 打印培训模拟器,该模拟器考虑了解剖学和机械学特征,专为此类手术而设计。方法从常规获取的计算机断层扫描(CT)图像开始,重建心脏的 3D 数字模型。然后对其进行适当的 "增强",使其能够真实地再现手术中涉及的关键特征。模拟器是利用 Polyjet 3D 打印技术制造的。为了准确再现机械性能,对材料进行了适当的选择。然后,由专业人员使用 TriClip™ 系统对制造的原型进行了测试。结果对模拟器进行了评估,以练习入路、导航、导管转向和瓣叶抓取。在整个过程中,适当放置的摄像头确保操作人员能在屏幕上看到关键步骤。即使需要更深入的评估,初步反馈也是令人满意的。结论在这项研究中,我们设计、制作并初步评估了 TriClip™ 手术的新型培训模拟器。进一步的研究必须证明使用这种模拟器设计的优势,以缩短学习曲线,从而获得更好的临床效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D printed training simulator for transcatheter edge-to-edge repair of the tricuspid valve: A proof-of-concept

Background

Tricuspid regurgitation (TR) treatments have gradually shifted toward a more interventional approach and transcatheter edge-to-edge repair (TEER) has assumed a first-order role. TriClip™ by Abbott (Menlo Park, USA) is one of the most widely used devices for tricuspid repair. TEER procedures are recognised as technically challenging, characterized by a steep learning curve. For this reason, specialized training is necessary. The aim of this work is to develop and test a novel 3D printed training simulator, which considers both anatomical and mechanical characteristics, specifically designed for this kind of procedure.

Methods

Starting from routinely acquired computed tomography (CT) images, a 3D digital model of the heart was reconstructed. This was then properly “augmented”, so that it could realistically reproduce the key features involved in the procedure. The simulator was manufactured exploiting the Polyjet 3D printed. Proper materials selection was performed to accurately reproduce mechanical properties. The manufactured prototype was then tested by a specialized professional, with the TriClip™ system.

Results

The simulator was assessed to practice access, navigation, catheter steering and leaflet grasping. Throughout the process, appropriately placed cameras ensured that the operators could visualize the crucial steps on a screen. Even if a deeper evaluation is needed, preliminary feedback is satisfactory.

Conclusions

In this study, a new training simulator for TriClip™ procedure was designed, produced, and preliminary assessed. Further studies will have to demonstrate the advantages of using this simulator design to shorten the learning curve and subsequently lead to better clinical outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of 3D printed medicine
Annals of 3D printed medicine Medicine and Dentistry (General), Materials Science (General)
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
131 days
期刊最新文献
A novel approach to hallucal sesamoid pathology utilizing a 3D printed patient specific total sesamoid replacement implant: Case series Selective laser sintering at the Point-of-Care 3D printing laboratory in hospitals for cranio-maxillo-facial surgery: A further step into industrial additive manufacturing made available to clinicians Editorial Board Contents 3D-printed β-TCP/Ti6Al4V composite scaffolds for bone regeneration: Process parameter optimization and evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1