基于 11B4C 的大型 Ni/Ti 超镜中子光学器件的材料设计优化

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-05-31 DOI:10.1016/j.matdes.2024.113061
Sjoerd Stendahl , Naureen Ghafoor , Anton Zubayer , Marcus Lorentzon , Alexei Vorobiev , Jens Birch , Fredrik Eriksson
{"title":"基于 11B4C 的大型 Ni/Ti 超镜中子光学器件的材料设计优化","authors":"Sjoerd Stendahl ,&nbsp;Naureen Ghafoor ,&nbsp;Anton Zubayer ,&nbsp;Marcus Lorentzon ,&nbsp;Alexei Vorobiev ,&nbsp;Jens Birch ,&nbsp;Fredrik Eriksson","doi":"10.1016/j.matdes.2024.113061","DOIUrl":null,"url":null,"abstract":"<div><p>State-of-the-art Ni/Ti supermirror neutron optics have limited reflected intensity and a restricted neutron energy range due to the interface width. Incorporating low-neutron-absorbing <sup>11</sup>B<sub>4</sub>C enhances reflectivity and allows for thinner layers to be deposited, with which more efficient supermirrors with higher m-values can be realized. However, incorporating <sup>11</sup>B<sub>4</sub>C reduces the optical contrast, limiting the attainable reflectivity at low scattering vectors, making this approach infeasible. This study explores various approaches to optimize the material design of <sup>11</sup>B<sub>4</sub>C-containing Ni/Ti supermirrors to maintain high reflectivity at low scattering vectors and achieve low interface widths at large scattering vectors. The scattering length density contrast versus interface width is investigated for multilayer periods of 30 Å, 48 Å, and 84 Å, for designs involving pure Ni/Ti multilayers, multilayers with <sup>11</sup>B<sub>4</sub>C co-deposited in Ni and Ti layers, multilayers with <sup>11</sup>B<sub>4</sub>C co-deposited only in Ni layers, and multilayers with <sup>11</sup>B<sub>4</sub>C as thin interlayers between Ni and Ti layers. Our results suggest that a depth-graded hybrid material design by incorporating <sup>11</sup>B<sub>4</sub>C inside the Ni and Ti layers, below approximately 26 Å, and introducing 1.5 Å <sup>11</sup>B<sub>4</sub>C interlayers between the thicker Ni and Ti layers can achieve a higher reflectivity than state-of-the-art Ni/Ti multilayers over the entire scattering vector range.</p></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0264127524004350/pdfft?md5=e101285e046385d49c8d85be9d3bcbfc&pid=1-s2.0-S0264127524004350-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Material design optimization for large-m 11B4C-based Ni/Ti supermirror neutron optics\",\"authors\":\"Sjoerd Stendahl ,&nbsp;Naureen Ghafoor ,&nbsp;Anton Zubayer ,&nbsp;Marcus Lorentzon ,&nbsp;Alexei Vorobiev ,&nbsp;Jens Birch ,&nbsp;Fredrik Eriksson\",\"doi\":\"10.1016/j.matdes.2024.113061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>State-of-the-art Ni/Ti supermirror neutron optics have limited reflected intensity and a restricted neutron energy range due to the interface width. Incorporating low-neutron-absorbing <sup>11</sup>B<sub>4</sub>C enhances reflectivity and allows for thinner layers to be deposited, with which more efficient supermirrors with higher m-values can be realized. However, incorporating <sup>11</sup>B<sub>4</sub>C reduces the optical contrast, limiting the attainable reflectivity at low scattering vectors, making this approach infeasible. This study explores various approaches to optimize the material design of <sup>11</sup>B<sub>4</sub>C-containing Ni/Ti supermirrors to maintain high reflectivity at low scattering vectors and achieve low interface widths at large scattering vectors. The scattering length density contrast versus interface width is investigated for multilayer periods of 30 Å, 48 Å, and 84 Å, for designs involving pure Ni/Ti multilayers, multilayers with <sup>11</sup>B<sub>4</sub>C co-deposited in Ni and Ti layers, multilayers with <sup>11</sup>B<sub>4</sub>C co-deposited only in Ni layers, and multilayers with <sup>11</sup>B<sub>4</sub>C as thin interlayers between Ni and Ti layers. Our results suggest that a depth-graded hybrid material design by incorporating <sup>11</sup>B<sub>4</sub>C inside the Ni and Ti layers, below approximately 26 Å, and introducing 1.5 Å <sup>11</sup>B<sub>4</sub>C interlayers between the thicker Ni and Ti layers can achieve a higher reflectivity than state-of-the-art Ni/Ti multilayers over the entire scattering vector range.</p></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0264127524004350/pdfft?md5=e101285e046385d49c8d85be9d3bcbfc&pid=1-s2.0-S0264127524004350-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524004350\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524004350","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最先进的镍/钛超镜中子光学器件的反射强度有限,而且由于界面宽度的原因,中子能量范围也受到限制。加入低中子吸收率的 11B4C 可提高反射率,使沉积层更薄,从而实现更高效、更高 m 值的超反射镜。然而,加入 11B4C 会降低光学对比度,限制低散射矢量下可达到的反射率,从而使这种方法变得不可行。本研究探讨了优化含 11B4C 的镍/钛超反射镜材料设计的各种方法,以便在低散射矢量时保持高反射率,在大散射矢量时实现低界面宽度。我们研究了 30 Å、48 Å 和 84 Å 多层周期的散射长度密度与界面宽度的对比,设计涉及纯 Ni/Ti 多层、在 Ni 和 Ti 层中共沉积 11B4C 的多层、仅在 Ni 层中共沉积 11B4C 的多层以及在 Ni 和 Ti 层之间以薄夹层形式沉积 11B4C 的多层。我们的研究结果表明,在镍层和钛层中加入 11B4C 的深度分级混合材料设计(低于约 26 Å),并在较厚的镍层和钛层之间引入 1.5 Å 的 11B4C 夹层,可以在整个散射矢量范围内获得比最先进的镍/钛多层材料更高的反射率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Material design optimization for large-m 11B4C-based Ni/Ti supermirror neutron optics

State-of-the-art Ni/Ti supermirror neutron optics have limited reflected intensity and a restricted neutron energy range due to the interface width. Incorporating low-neutron-absorbing 11B4C enhances reflectivity and allows for thinner layers to be deposited, with which more efficient supermirrors with higher m-values can be realized. However, incorporating 11B4C reduces the optical contrast, limiting the attainable reflectivity at low scattering vectors, making this approach infeasible. This study explores various approaches to optimize the material design of 11B4C-containing Ni/Ti supermirrors to maintain high reflectivity at low scattering vectors and achieve low interface widths at large scattering vectors. The scattering length density contrast versus interface width is investigated for multilayer periods of 30 Å, 48 Å, and 84 Å, for designs involving pure Ni/Ti multilayers, multilayers with 11B4C co-deposited in Ni and Ti layers, multilayers with 11B4C co-deposited only in Ni layers, and multilayers with 11B4C as thin interlayers between Ni and Ti layers. Our results suggest that a depth-graded hybrid material design by incorporating 11B4C inside the Ni and Ti layers, below approximately 26 Å, and introducing 1.5 Å 11B4C interlayers between the thicker Ni and Ti layers can achieve a higher reflectivity than state-of-the-art Ni/Ti multilayers over the entire scattering vector range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Multi-directional freeze-casting of interpenetrating phase composites with multi-aligned structure, nearly isotropy, high performance Mechanical characterization of lattice structures fabricated by selective laser melting via an image-based finite cell method with a damage model Gelatin-methacrylate microspheres loaded with tendon-derived stem cells facilitate tendinopathy healing Tensile and fatigue behaviors of newly developed HAYNES® 233 alloy: Additively manufactured vs. wrought Kinetics and mechanisms of high-temperature oxidation in BCC and FCC high-alloy Fe-based alloys with high volume fraction of carbides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1