{"title":"探索同学交往中的情绪状态对学生学习成绩的影响","authors":"Nasrin Dehbozorgi;Mourya Teja Kunuku","doi":"10.1109/TE.2023.3335171","DOIUrl":null,"url":null,"abstract":"Contribution: An AI model for speech emotion recognition (SER) in the educational domain to analyze the correlation between students’ emotions, discussed topics in teams, and academic performance.Background: Research suggests that positive emotions are associated with better academic performance. On the other hand, negative emotions have a detrimental impact on academic achievement. This highlights the importance of taking into account the emotional states of the students to promote a supportive learning environment and improve their motivation and engagement. This line of research allows the development of tools that allow educators to address students’ emotional needs and provide timely support and interventions. Intended Outcome: This work analyzes students’ conversations and their expressed emotions as they work on class activities in teams and investigates if their conversations are course-related or not by applying topic extraction to the conversations. Furthermore, a comprehensive analysis is conducted to identify the correlation between emotions expressed by students and the discussed topics with their performance in the course in terms of their grades. Application Design: The student’s performance is formatively evaluated, taking into account a combination of their scores in various components. The core of the developed model comprises a speech transcriber module, an emotion analysis module, and a topic extraction module. The outputs of all these modules are processed to identify the correlations. Findings: The findings show a strong positive correlation between the expressed emotions of “relief” and “satisfaction” with students’ grades and a strong negative correlation between “frustration” and grades. Data also shows a strong positive correlation between course-related topics discussed in teams and grades and a strong negative correlation between noncourse-related topics and grades.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":"67 3","pages":"405-412"},"PeriodicalIF":2.1000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Influence of Emotional States in Peer Interactions on Students’ Academic Performance\",\"authors\":\"Nasrin Dehbozorgi;Mourya Teja Kunuku\",\"doi\":\"10.1109/TE.2023.3335171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contribution: An AI model for speech emotion recognition (SER) in the educational domain to analyze the correlation between students’ emotions, discussed topics in teams, and academic performance.Background: Research suggests that positive emotions are associated with better academic performance. On the other hand, negative emotions have a detrimental impact on academic achievement. This highlights the importance of taking into account the emotional states of the students to promote a supportive learning environment and improve their motivation and engagement. This line of research allows the development of tools that allow educators to address students’ emotional needs and provide timely support and interventions. Intended Outcome: This work analyzes students’ conversations and their expressed emotions as they work on class activities in teams and investigates if their conversations are course-related or not by applying topic extraction to the conversations. Furthermore, a comprehensive analysis is conducted to identify the correlation between emotions expressed by students and the discussed topics with their performance in the course in terms of their grades. Application Design: The student’s performance is formatively evaluated, taking into account a combination of their scores in various components. The core of the developed model comprises a speech transcriber module, an emotion analysis module, and a topic extraction module. The outputs of all these modules are processed to identify the correlations. Findings: The findings show a strong positive correlation between the expressed emotions of “relief” and “satisfaction” with students’ grades and a strong negative correlation between “frustration” and grades. Data also shows a strong positive correlation between course-related topics discussed in teams and grades and a strong negative correlation between noncourse-related topics and grades.\",\"PeriodicalId\":55011,\"journal\":{\"name\":\"IEEE Transactions on Education\",\"volume\":\"67 3\",\"pages\":\"405-412\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Education\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10367874/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Education","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10367874/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Exploring the Influence of Emotional States in Peer Interactions on Students’ Academic Performance
Contribution: An AI model for speech emotion recognition (SER) in the educational domain to analyze the correlation between students’ emotions, discussed topics in teams, and academic performance.Background: Research suggests that positive emotions are associated with better academic performance. On the other hand, negative emotions have a detrimental impact on academic achievement. This highlights the importance of taking into account the emotional states of the students to promote a supportive learning environment and improve their motivation and engagement. This line of research allows the development of tools that allow educators to address students’ emotional needs and provide timely support and interventions. Intended Outcome: This work analyzes students’ conversations and their expressed emotions as they work on class activities in teams and investigates if their conversations are course-related or not by applying topic extraction to the conversations. Furthermore, a comprehensive analysis is conducted to identify the correlation between emotions expressed by students and the discussed topics with their performance in the course in terms of their grades. Application Design: The student’s performance is formatively evaluated, taking into account a combination of their scores in various components. The core of the developed model comprises a speech transcriber module, an emotion analysis module, and a topic extraction module. The outputs of all these modules are processed to identify the correlations. Findings: The findings show a strong positive correlation between the expressed emotions of “relief” and “satisfaction” with students’ grades and a strong negative correlation between “frustration” and grades. Data also shows a strong positive correlation between course-related topics discussed in teams and grades and a strong negative correlation between noncourse-related topics and grades.
期刊介绍:
The IEEE Transactions on Education (ToE) publishes significant and original scholarly contributions to education in electrical and electronics engineering, computer engineering, computer science, and other fields within the scope of interest of IEEE. Contributions must address discovery, integration, and/or application of knowledge in education in these fields. Articles must support contributions and assertions with compelling evidence and provide explicit, transparent descriptions of the processes through which the evidence is collected, analyzed, and interpreted. While characteristics of compelling evidence cannot be described to address every conceivable situation, generally assessment of the work being reported must go beyond student self-report and attitudinal data.