{"title":"网络异常现象检测和故障规模估算方法","authors":"Naoya Ogawa;Ryoichi Kawahara","doi":"10.23919/comex.2024XBL0028","DOIUrl":null,"url":null,"abstract":"In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 6","pages":"206-209"},"PeriodicalIF":0.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494939","citationCount":"0","resultStr":"{\"title\":\"Method for Network-Anomaly Detection and Failure-Scale Estimation\",\"authors\":\"Naoya Ogawa;Ryoichi Kawahara\",\"doi\":\"10.23919/comex.2024XBL0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.\",\"PeriodicalId\":54101,\"journal\":{\"name\":\"IEICE Communications Express\",\"volume\":\"13 6\",\"pages\":\"206-209\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10494939\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Communications Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10494939/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10494939/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Method for Network-Anomaly Detection and Failure-Scale Estimation
In this study, we propose a novel method for network-anomaly detection and failure-scale estimation using autoencoders, which are a type of neural network. The proposed method first divides the network into several groups. Subsequently, anomalies are detected using an autoencoder for each intergroup traffic, and the failure-scale is estimated from the number of autoencoders that have detected anomalies. We experimentally investigated anomaly detection during communication through a virtual network built using the network emulator Mininet and confirmed that the proposed method can successfully detect anomalies and estimate the failure scale.