利用卡普托导数在无线传感器网络中传输恶意代码的人工神经网络方法

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Numerical Modelling-Electronic Networks Devices and Fields Pub Date : 2024-06-03 DOI:10.1002/jnm.3256
Zia Ullah Khan, Mati ur Rahman, Muhammad Arfan,  Waseem, Salah Boulaaras
{"title":"利用卡普托导数在无线传感器网络中传输恶意代码的人工神经网络方法","authors":"Zia Ullah Khan,&nbsp;Mati ur Rahman,&nbsp;Muhammad Arfan,&nbsp; Waseem,&nbsp;Salah Boulaaras","doi":"10.1002/jnm.3256","DOIUrl":null,"url":null,"abstract":"<p>The current manuscript investigates a six compartmental mathematical model for malicious Codes in Wireless Sensor Network is consider for investigation under the fractional operator of Caputo along with their numerical scheme. The six agent nodes of the network sensors are transferable like in infection with in their community of different nodes. With the help of fixed point theory the presentation of existence and uniqueness of solution of the said model are also given. The scheme of numerical solution under fractional format is developed with the choice of fractional orders which increasing the degree of freedom for such type of network analysis. The numerical simulation of all the six agents are given on different fractional orders along with sensitivity of the fractional orders and some used parameters. The new analysis artificial neural network (ANN) method has been utilized for the considered model and compared with Adams–Bashforth (AB) method. We divided the data set into three categories training, testing and validation with ANN method and the analysis is presented in this work.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The artificial neural network approach for the transmission of malicious codes in wireless sensor networks with Caputo derivative\",\"authors\":\"Zia Ullah Khan,&nbsp;Mati ur Rahman,&nbsp;Muhammad Arfan,&nbsp; Waseem,&nbsp;Salah Boulaaras\",\"doi\":\"10.1002/jnm.3256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current manuscript investigates a six compartmental mathematical model for malicious Codes in Wireless Sensor Network is consider for investigation under the fractional operator of Caputo along with their numerical scheme. The six agent nodes of the network sensors are transferable like in infection with in their community of different nodes. With the help of fixed point theory the presentation of existence and uniqueness of solution of the said model are also given. The scheme of numerical solution under fractional format is developed with the choice of fractional orders which increasing the degree of freedom for such type of network analysis. The numerical simulation of all the six agents are given on different fractional orders along with sensitivity of the fractional orders and some used parameters. The new analysis artificial neural network (ANN) method has been utilized for the considered model and compared with Adams–Bashforth (AB) method. We divided the data set into three categories training, testing and validation with ANN method and the analysis is presented in this work.</p>\",\"PeriodicalId\":50300,\"journal\":{\"name\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Modelling-Electronic Networks Devices and Fields\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3256\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3256","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本手稿研究了无线传感器网络中恶意代码的六个分区数学模型,并考虑了卡普托分式算子及其数值方案。网络传感器的六个代理节点可以像感染一样在不同节点的社区中转移。在定点理论的帮助下,还给出了上述模型解的存在性和唯一性。在分数格式下的数值求解方案是根据分数阶数的选择制定的,这增加了此类网络分析的自由度。给出了所有六个代理在不同分数阶数下的数值模拟,以及分数阶数和一些使用参数的敏感性。新的人工神经网络(ANN)分析方法已用于所考虑的模型,并与亚当斯-巴什福斯(AB)方法进行了比较。我们使用 ANN 方法将数据集分为训练、测试和验证三类,并在本作品中进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The artificial neural network approach for the transmission of malicious codes in wireless sensor networks with Caputo derivative

The current manuscript investigates a six compartmental mathematical model for malicious Codes in Wireless Sensor Network is consider for investigation under the fractional operator of Caputo along with their numerical scheme. The six agent nodes of the network sensors are transferable like in infection with in their community of different nodes. With the help of fixed point theory the presentation of existence and uniqueness of solution of the said model are also given. The scheme of numerical solution under fractional format is developed with the choice of fractional orders which increasing the degree of freedom for such type of network analysis. The numerical simulation of all the six agents are given on different fractional orders along with sensitivity of the fractional orders and some used parameters. The new analysis artificial neural network (ANN) method has been utilized for the considered model and compared with Adams–Bashforth (AB) method. We divided the data set into three categories training, testing and validation with ANN method and the analysis is presented in this work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
期刊最新文献
Subthreshold Drain Current Model of Cylindrical Gate All-Around Junctionless Transistor With Three Different Gate Materials Hybrid TLM-CTLM Test Structure for Determining Specific Contact Resistivity of Ohmic Contacts Optimal Design of Smart Antenna Arrays for Beamforming, Direction Finding, and Null Placement Using the Soft Computing Method A Nonlinear Model of RF Switch Device Based on Common Gate GaAs FETs Analysis of etched drain based Cylindrical agate-all-around tunnel field effect transistor based static random access memory cell design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1