冬季车厢内乘客脑电图与热感之间的关系

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Indoor air Pub Date : 2024-05-28 DOI:10.1155/2024/6816185
Xin Xu, Lanping Zhao, Yuxin Hu, Qinyue Zheng, Guomin Wu, Zhigang Yang
{"title":"冬季车厢内乘客脑电图与热感之间的关系","authors":"Xin Xu,&nbsp;Lanping Zhao,&nbsp;Yuxin Hu,&nbsp;Qinyue Zheng,&nbsp;Guomin Wu,&nbsp;Zhigang Yang","doi":"10.1155/2024/6816185","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The development of electric vehicles (EVs) has prompted a critical examination of the trade-off between range and human thermal comfort. Therefore, an accurate, real-time assessment of human thermal perception inside vehicles is important. This study investigates an electroencephalogram- (EEG-) based method for evaluating human thermal comfort in the vehicle passenger compartment. Under transient winter heating conditions, the study experimentally investigates the correlation between objective physiological parameters (skin temperature and electroencephalogram) and subjective human thermal perception. The results reveal distinct patterns in EEG signals corresponding to changes in thermal perception. Specifically, the <i>δ</i> rhythm exhibits a U-shape variation with increasing thermal perception, while the <i>θ</i>, <i>α</i>, <i>β</i>, and <i>γ</i> rhythms display an inverted U-shape variation. Differences in each frequency band across thermal comfort states in humans are greater than differences in the frequency band across thermal sensation states. Furthermore, the relative power of the <i>θ</i> rhythm emerges as the most effective in discerning the thermal perception state of the human body. The EEG signal characteristics of the T7 and T8 channels align more closely with human thermal sensation, whereas the AF4 channel excels at discriminating the state of human thermal comfort. The insights gained from this study serve as a foundation for evaluating human thermal perception in vehicles, enhancing human-vehicle interaction, and addressing challenges related to human thermal comfort and vehicle range.</p>\n </div>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6816185","citationCount":"0","resultStr":"{\"title\":\"Relationships between Electroencephalogram and Thermal Perception of Passenger in Winter Vehicle Compartments\",\"authors\":\"Xin Xu,&nbsp;Lanping Zhao,&nbsp;Yuxin Hu,&nbsp;Qinyue Zheng,&nbsp;Guomin Wu,&nbsp;Zhigang Yang\",\"doi\":\"10.1155/2024/6816185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The development of electric vehicles (EVs) has prompted a critical examination of the trade-off between range and human thermal comfort. Therefore, an accurate, real-time assessment of human thermal perception inside vehicles is important. This study investigates an electroencephalogram- (EEG-) based method for evaluating human thermal comfort in the vehicle passenger compartment. Under transient winter heating conditions, the study experimentally investigates the correlation between objective physiological parameters (skin temperature and electroencephalogram) and subjective human thermal perception. The results reveal distinct patterns in EEG signals corresponding to changes in thermal perception. Specifically, the <i>δ</i> rhythm exhibits a U-shape variation with increasing thermal perception, while the <i>θ</i>, <i>α</i>, <i>β</i>, and <i>γ</i> rhythms display an inverted U-shape variation. Differences in each frequency band across thermal comfort states in humans are greater than differences in the frequency band across thermal sensation states. Furthermore, the relative power of the <i>θ</i> rhythm emerges as the most effective in discerning the thermal perception state of the human body. The EEG signal characteristics of the T7 and T8 channels align more closely with human thermal sensation, whereas the AF4 channel excels at discriminating the state of human thermal comfort. The insights gained from this study serve as a foundation for evaluating human thermal perception in vehicles, enhancing human-vehicle interaction, and addressing challenges related to human thermal comfort and vehicle range.</p>\\n </div>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6816185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/6816185\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6816185","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

电动汽车(EV)的发展促使人们对续航里程与人体热舒适度之间的权衡进行了认真研究。因此,准确、实时地评估人在车内的热感知非常重要。本研究调查了一种基于脑电图(EEG)的方法,用于评估汽车乘客舱内的人体热舒适度。在瞬时冬季供暖条件下,该研究通过实验调查了客观生理参数(皮肤温度和脑电图)与人的主观热感之间的相关性。结果表明,脑电信号中存在与热感知变化相对应的独特模式。具体来说,δ节律随着热感的增加而呈现 U 型变化,而θ、α、β和γ节律则呈现倒 U 型变化。人体热舒适状态下各频段的差异大于热感觉状态下各频段的差异。此外,θ 节律的相对功率在辨别人体热感状态时最为有效。T7 和 T8 频道的脑电信号特征与人体热感觉更为接近,而 AF4 频道则擅长辨别人体热舒适状态。本研究获得的见解为评估车辆中的人体热感知、增强人车互动以及应对与人体热舒适度和车辆续航里程相关的挑战奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relationships between Electroencephalogram and Thermal Perception of Passenger in Winter Vehicle Compartments

The development of electric vehicles (EVs) has prompted a critical examination of the trade-off between range and human thermal comfort. Therefore, an accurate, real-time assessment of human thermal perception inside vehicles is important. This study investigates an electroencephalogram- (EEG-) based method for evaluating human thermal comfort in the vehicle passenger compartment. Under transient winter heating conditions, the study experimentally investigates the correlation between objective physiological parameters (skin temperature and electroencephalogram) and subjective human thermal perception. The results reveal distinct patterns in EEG signals corresponding to changes in thermal perception. Specifically, the δ rhythm exhibits a U-shape variation with increasing thermal perception, while the θ, α, β, and γ rhythms display an inverted U-shape variation. Differences in each frequency band across thermal comfort states in humans are greater than differences in the frequency band across thermal sensation states. Furthermore, the relative power of the θ rhythm emerges as the most effective in discerning the thermal perception state of the human body. The EEG signal characteristics of the T7 and T8 channels align more closely with human thermal sensation, whereas the AF4 channel excels at discriminating the state of human thermal comfort. The insights gained from this study serve as a foundation for evaluating human thermal perception in vehicles, enhancing human-vehicle interaction, and addressing challenges related to human thermal comfort and vehicle range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
期刊最新文献
COVID-19 Infection Risk Assessment in a Kindergarten Utilizing Continuous Air Quality Monitoring Data Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic Indoor Air Quality: Predicting and Comparing Protective Behaviors in Germany and Portugal Holographic Air-Quality Monitor (HAM) Indoor Exchange Rates and Penetration From Outdoors in an Instrumented Terraced House (Townhouse) Using Gas Tracers: Implications for Particles and Gases Indoors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1