{"title":"基于铜(I)的金属-金属-配体电荷转移激发态与卤原子转移光活性和光催化","authors":"","doi":"10.1016/j.chempr.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-metal-bonded excited states of Cu(I) complexes have rarely been studied, although such excited states of d<sup>10</sup> noble metal complexes have been well documented to cleave C–H and C–X bonds. We describe here a panel of air-stable two-coordinate binuclear Cu<sub>2</sub>(I,I) N-heterocyclic carbene complexes with short intramolecular Cu–Cu (2.75–2.88 Å) and Cu–arene (2.61–2.65 Å) distances. The triplet metal-metal-to-ligand charge transfer excited states of these Cu<sub>2</sub>(I,I) complexes are highly emissive and long-lived (Φ<sub>em</sub> up to 0.67, τ 2.9–36.1 μs in solution) and can cleave strong R–X (X = Br or Cl) bonds to give mixed-valence [X–Cu<sup>1.5</sup>Cu<sup>1.5</sup>–Y]<sup>+/2+</sup> (Y = X or solvent) species and carbon-centered radicals via an excited-state halogen-atom transfer mechanism. The spin-delocalized [X–Cu<sup>1.5</sup>Cu<sup>1.5</sup>–X]<sup>+</sup><span> species (X = Br or Cl) have been characterized by single-crystal XRD, EPR spectroscopy, and density functional theory (DFT) calculations. </span><strong>Cu3</strong><span> is an efficient photocatalyst for C–C coupling reactions with aryl/alkyl halides under 390 nm LED irradiation.</span></p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper(I)-based metal-metal-to-ligand charge transfer excited state with halogen-atom transfer photo-reactivity and photocatalysis\",\"authors\":\"\",\"doi\":\"10.1016/j.chempr.2024.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-metal-bonded excited states of Cu(I) complexes have rarely been studied, although such excited states of d<sup>10</sup> noble metal complexes have been well documented to cleave C–H and C–X bonds. We describe here a panel of air-stable two-coordinate binuclear Cu<sub>2</sub>(I,I) N-heterocyclic carbene complexes with short intramolecular Cu–Cu (2.75–2.88 Å) and Cu–arene (2.61–2.65 Å) distances. The triplet metal-metal-to-ligand charge transfer excited states of these Cu<sub>2</sub>(I,I) complexes are highly emissive and long-lived (Φ<sub>em</sub> up to 0.67, τ 2.9–36.1 μs in solution) and can cleave strong R–X (X = Br or Cl) bonds to give mixed-valence [X–Cu<sup>1.5</sup>Cu<sup>1.5</sup>–Y]<sup>+/2+</sup> (Y = X or solvent) species and carbon-centered radicals via an excited-state halogen-atom transfer mechanism. The spin-delocalized [X–Cu<sup>1.5</sup>Cu<sup>1.5</sup>–X]<sup>+</sup><span> species (X = Br or Cl) have been characterized by single-crystal XRD, EPR spectroscopy, and density functional theory (DFT) calculations. </span><strong>Cu3</strong><span> is an efficient photocatalyst for C–C coupling reactions with aryl/alkyl halides under 390 nm LED irradiation.</span></p></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424002249\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424002249","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Copper(I)-based metal-metal-to-ligand charge transfer excited state with halogen-atom transfer photo-reactivity and photocatalysis
Metal-metal-bonded excited states of Cu(I) complexes have rarely been studied, although such excited states of d10 noble metal complexes have been well documented to cleave C–H and C–X bonds. We describe here a panel of air-stable two-coordinate binuclear Cu2(I,I) N-heterocyclic carbene complexes with short intramolecular Cu–Cu (2.75–2.88 Å) and Cu–arene (2.61–2.65 Å) distances. The triplet metal-metal-to-ligand charge transfer excited states of these Cu2(I,I) complexes are highly emissive and long-lived (Φem up to 0.67, τ 2.9–36.1 μs in solution) and can cleave strong R–X (X = Br or Cl) bonds to give mixed-valence [X–Cu1.5Cu1.5–Y]+/2+ (Y = X or solvent) species and carbon-centered radicals via an excited-state halogen-atom transfer mechanism. The spin-delocalized [X–Cu1.5Cu1.5–X]+ species (X = Br or Cl) have been characterized by single-crystal XRD, EPR spectroscopy, and density functional theory (DFT) calculations. Cu3 is an efficient photocatalyst for C–C coupling reactions with aryl/alkyl halides under 390 nm LED irradiation.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.