Mark B Lockwood, Choa Sung, Suzanne A Alvernaz, John R Lee, Jennifer L Chin, Mehdi Nayebpour, Beatriz Peñalver Bernabé, Lisa M Tussing-Humphreys, Hongjin Li, Mario Spaggiari, Alessandro Martinino, Chang G Park, George E Chlipala, Ardith Z Doorenbos, Stefan J Green
{"title":"肠道微生物组与肾移植后的症状负担:概述与研究机会。","authors":"Mark B Lockwood, Choa Sung, Suzanne A Alvernaz, John R Lee, Jennifer L Chin, Mehdi Nayebpour, Beatriz Peñalver Bernabé, Lisa M Tussing-Humphreys, Hongjin Li, Mario Spaggiari, Alessandro Martinino, Chang G Park, George E Chlipala, Ardith Z Doorenbos, Stefan J Green","doi":"10.1177/10998004241256031","DOIUrl":null,"url":null,"abstract":"<p><p>Many kidney transplant recipients continue to experience high symptom burden despite restoration of kidney function. High symptom burden is a significant driver of quality of life. In the post-transplant setting, high symptom burden has been linked to negative outcomes including medication non-adherence, allograft rejection, graft loss, and even mortality. Symbiotic bacteria (microbiota) in the human gastrointestinal tract critically interact with the immune, endocrine, and neurological systems to maintain homeostasis of the host. The gut microbiome has been proposed as an underlying mechanism mediating symptoms in several chronic medical conditions including irritable bowel syndrome, chronic fatigue syndrome, fibromyalgia, and psychoneurological disorders via the gut-brain-microbiota axis, a bidirectional signaling pathway between the enteric and central nervous system. Post-transplant exposure to antibiotics, antivirals, and immunosuppressant medications results in significant alterations in gut microbiota community composition and function, which in turn alter these commensal microorganisms' protective effects. This overview will discuss the current state of the science on the effects of the gut microbiome on symptom burden in kidney transplantation and future directions to guide this field of study.</p>","PeriodicalId":93901,"journal":{"name":"Biological research for nursing","volume":" ","pages":"636-656"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gut Microbiome and Symptom Burden After Kidney Transplantation: An Overview and Research Opportunities.\",\"authors\":\"Mark B Lockwood, Choa Sung, Suzanne A Alvernaz, John R Lee, Jennifer L Chin, Mehdi Nayebpour, Beatriz Peñalver Bernabé, Lisa M Tussing-Humphreys, Hongjin Li, Mario Spaggiari, Alessandro Martinino, Chang G Park, George E Chlipala, Ardith Z Doorenbos, Stefan J Green\",\"doi\":\"10.1177/10998004241256031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many kidney transplant recipients continue to experience high symptom burden despite restoration of kidney function. High symptom burden is a significant driver of quality of life. In the post-transplant setting, high symptom burden has been linked to negative outcomes including medication non-adherence, allograft rejection, graft loss, and even mortality. Symbiotic bacteria (microbiota) in the human gastrointestinal tract critically interact with the immune, endocrine, and neurological systems to maintain homeostasis of the host. The gut microbiome has been proposed as an underlying mechanism mediating symptoms in several chronic medical conditions including irritable bowel syndrome, chronic fatigue syndrome, fibromyalgia, and psychoneurological disorders via the gut-brain-microbiota axis, a bidirectional signaling pathway between the enteric and central nervous system. Post-transplant exposure to antibiotics, antivirals, and immunosuppressant medications results in significant alterations in gut microbiota community composition and function, which in turn alter these commensal microorganisms' protective effects. This overview will discuss the current state of the science on the effects of the gut microbiome on symptom burden in kidney transplantation and future directions to guide this field of study.</p>\",\"PeriodicalId\":93901,\"journal\":{\"name\":\"Biological research for nursing\",\"volume\":\" \",\"pages\":\"636-656\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological research for nursing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10998004241256031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological research for nursing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10998004241256031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The Gut Microbiome and Symptom Burden After Kidney Transplantation: An Overview and Research Opportunities.
Many kidney transplant recipients continue to experience high symptom burden despite restoration of kidney function. High symptom burden is a significant driver of quality of life. In the post-transplant setting, high symptom burden has been linked to negative outcomes including medication non-adherence, allograft rejection, graft loss, and even mortality. Symbiotic bacteria (microbiota) in the human gastrointestinal tract critically interact with the immune, endocrine, and neurological systems to maintain homeostasis of the host. The gut microbiome has been proposed as an underlying mechanism mediating symptoms in several chronic medical conditions including irritable bowel syndrome, chronic fatigue syndrome, fibromyalgia, and psychoneurological disorders via the gut-brain-microbiota axis, a bidirectional signaling pathway between the enteric and central nervous system. Post-transplant exposure to antibiotics, antivirals, and immunosuppressant medications results in significant alterations in gut microbiota community composition and function, which in turn alter these commensal microorganisms' protective effects. This overview will discuss the current state of the science on the effects of the gut microbiome on symptom burden in kidney transplantation and future directions to guide this field of study.