{"title":"化学战剂模拟物的单发对峙高光谱拉曼成像。","authors":"Benjamin R Anderson, Hergen Eilers","doi":"10.1177/00037028241258105","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate single-shot standoff hyperspectral Raman imaging of liquid diisopropyl methylphosphonate at a standoff distance of 1 m using two different techniques: multi-bandpass filter imaging (MBFI) and fiber-bundle imaging spectroscopy (FBIS). We find that MBFI has good spatial resolution, but poor spectral resolution, due to the limitations of commercially available bandpass filters. On the other hand, we find FBIS to have excellent spectral resolution, but limited spatial resolution due to the relatively small number of fibers in a bundle. For FBIS, we also determine, for a 1 m standoff distance, a minimum pump fluence of 10 mJ/cm<sup>2</sup> to obtain good single-shot spectra.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"1183-1190"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-Shot Standoff Hyperspectral Raman Imaging of a Chemical Warfare Agent Simulant.\",\"authors\":\"Benjamin R Anderson, Hergen Eilers\",\"doi\":\"10.1177/00037028241258105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We demonstrate single-shot standoff hyperspectral Raman imaging of liquid diisopropyl methylphosphonate at a standoff distance of 1 m using two different techniques: multi-bandpass filter imaging (MBFI) and fiber-bundle imaging spectroscopy (FBIS). We find that MBFI has good spatial resolution, but poor spectral resolution, due to the limitations of commercially available bandpass filters. On the other hand, we find FBIS to have excellent spectral resolution, but limited spatial resolution due to the relatively small number of fibers in a bundle. For FBIS, we also determine, for a 1 m standoff distance, a minimum pump fluence of 10 mJ/cm<sup>2</sup> to obtain good single-shot spectra.</p>\",\"PeriodicalId\":8253,\"journal\":{\"name\":\"Applied Spectroscopy\",\"volume\":\" \",\"pages\":\"1183-1190\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/00037028241258105\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/00037028241258105","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Single-Shot Standoff Hyperspectral Raman Imaging of a Chemical Warfare Agent Simulant.
We demonstrate single-shot standoff hyperspectral Raman imaging of liquid diisopropyl methylphosphonate at a standoff distance of 1 m using two different techniques: multi-bandpass filter imaging (MBFI) and fiber-bundle imaging spectroscopy (FBIS). We find that MBFI has good spatial resolution, but poor spectral resolution, due to the limitations of commercially available bandpass filters. On the other hand, we find FBIS to have excellent spectral resolution, but limited spatial resolution due to the relatively small number of fibers in a bundle. For FBIS, we also determine, for a 1 m standoff distance, a minimum pump fluence of 10 mJ/cm2 to obtain good single-shot spectra.
期刊介绍:
Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”