基因组构建对 RNA-seq 解释和诊断的影响。

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY American journal of human genetics Pub Date : 2024-07-11 Epub Date: 2024-06-03 DOI:10.1016/j.ajhg.2024.05.005
Rachel A Ungar, Pagé C Goddard, Tanner D Jensen, Fabien Degalez, Kevin S Smith, Christopher A Jin, Devon E Bonner, Jonathan A Bernstein, Matthew T Wheeler, Stephen B Montgomery
{"title":"基因组构建对 RNA-seq 解释和诊断的影响。","authors":"Rachel A Ungar, Pagé C Goddard, Tanner D Jensen, Fabien Degalez, Kevin S Smith, Christopher A Jin, Devon E Bonner, Jonathan A Bernstein, Matthew T Wheeler, Stephen B Montgomery","doi":"10.1016/j.ajhg.2024.05.005","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network and Genomics Research to Elucidate the Genetics of Rare Disease Consortium. Across six routinely collected biospecimens, 61% of quantified genes were not influenced by genome build. However, we identified 1,492 genes with build-dependent quantification, 3,377 genes with build-exclusive expression, and 9,077 genes with annotation-specific expression across six routinely collected biospecimens, including 566 clinically relevant and 512 known OMIM genes. Further, we demonstrate that between builds for a given gene, a larger difference in quantification is well correlated with a larger change in expression outlier calling. Combined, we provide a database of genes impacted by build choice and recommend that transcriptomics-guided analyses and diagnoses are cross referenced with these data for robustness.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"1282-1300"},"PeriodicalIF":8.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267525/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of genome build on RNA-seq interpretation and diagnostics.\",\"authors\":\"Rachel A Ungar, Pagé C Goddard, Tanner D Jensen, Fabien Degalez, Kevin S Smith, Christopher A Jin, Devon E Bonner, Jonathan A Bernstein, Matthew T Wheeler, Stephen B Montgomery\",\"doi\":\"10.1016/j.ajhg.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network and Genomics Research to Elucidate the Genetics of Rare Disease Consortium. Across six routinely collected biospecimens, 61% of quantified genes were not influenced by genome build. However, we identified 1,492 genes with build-dependent quantification, 3,377 genes with build-exclusive expression, and 9,077 genes with annotation-specific expression across six routinely collected biospecimens, including 566 clinically relevant and 512 known OMIM genes. Further, we demonstrate that between builds for a given gene, a larger difference in quantification is well correlated with a larger change in expression outlier calling. Combined, we provide a database of genes impacted by build choice and recommend that transcriptomics-guided analyses and diagnoses are cross referenced with these data for robustness.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"1282-1300\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267525/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2024.05.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.05.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

转录组学是揭示基因变异分子效应和疾病诊断的有力工具。先前的研究表明,基因组构建的选择会影响基因组分析的变异解释和诊断结果。为了确定基因组构建在多大程度上也会影响转录组学分析,我们研究了 hg19、hg38 和 CHM13 基因组构建对表达量化和异常值检测的影响,这些样本来自未确诊疾病网络(Undiagnosed Diseases Network)和阐明罕见病遗传学的基因组研究联盟(Genomics Research to Elucidate the Genetics of Rare Disease Consortium)的 386 个罕见病和家族性对照样本。在六个常规采集的生物样本中,61%的量化基因不受基因组构建的影响。然而,我们在六个常规采集的生物样本中发现了 1492 个基因的量化依赖于构建,3377 个基因的表达不受构建影响,9077 个基因的表达受注释特异性影响,其中包括 566 个临床相关基因和 512 个已知的 OMIM 基因。此外,我们还证明,在特定基因的不同构建过程中,量化差异越大,表达异常值调用的变化就越大。综上所述,我们提供了一个受构建选择影响的基因数据库,并建议将转录组学指导的分析和诊断与这些数据相互参照,以提高稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of genome build on RNA-seq interpretation and diagnostics.

Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network and Genomics Research to Elucidate the Genetics of Rare Disease Consortium. Across six routinely collected biospecimens, 61% of quantified genes were not influenced by genome build. However, we identified 1,492 genes with build-dependent quantification, 3,377 genes with build-exclusive expression, and 9,077 genes with annotation-specific expression across six routinely collected biospecimens, including 566 clinically relevant and 512 known OMIM genes. Further, we demonstrate that between builds for a given gene, a larger difference in quantification is well correlated with a larger change in expression outlier calling. Combined, we provide a database of genes impacted by build choice and recommend that transcriptomics-guided analyses and diagnoses are cross referenced with these data for robustness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
期刊最新文献
Primary cartilage transcriptional signatures reflect cell-type-specific molecular pathways underpinning osteoarthritis. The PRIMED Consortium: Reducing disparities in polygenic risk assessment. The methylomic landscape of human articular cartilage development contains epigenetic signatures of osteoarthritis risk. Comparative analysis of predicted DNA secondary structures infers complex human centromere topology. Toward trustable use of machine learning models of variant effects in the clinic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1