{"title":"用重组 GnRH6-CRM197 进行主动免疫可抑制雄性大鼠的生殖功能。","authors":"XinBao Gong, Xu Yan, MengXian Li, MoYan Di, JunTai Lu, ShuangShuang Xu, ZhiHao Pan, YanYun Zhu, ZhuoYa Wu, Wei Zhang, Ping Qin, Ya Liu, YunSheng Li, FuGui Fang","doi":"10.1080/19396368.2024.2350372","DOIUrl":null,"url":null,"abstract":"<p><p>Gonadotropin-releasing hormone (GnRH) vaccines have been successfully used for the inhibition of gonadal development and function, but current GnRH-based vaccines often present variability in the response. Cross-reactive material 197 (CRM197) has been used as carrier molecules to enhance an immune response to associated antigens. So, the synthetic mammalian tandem-repeated GnRH hexamer (GnRH6) gene was integrated into the expression plasmid pET-21a. Recombinant GnRH6-CRM197 protein was subsequently overexpressed in Escherichia coli strain BL21 and purified through Nickel column affinity chromatography and the antigenicity and biological effects of GnRH6-CRM197 were evaluated in rats. Sixteen 4-month-old adult male rats were randomly divided into two groups: the GnRH6-CRM197 group (<i>n</i> = 8) and the control group (<i>n</i> = 8). The GnRH6-CRM197 group rats were subcutaneously immunized with 100 μg of GnRH6-CRM197, administered thrice at 2-week intervals with GnRH6-CRM197.The control group received only a white oil adjuvant. Following the initial immunization, the weights of animals were recorded, and blood samples were collected from the orbital sinus at 4, 4.5, 5, 5.5, 6, 6.5, and 7 months. Serum antibody titers and testosterone concentrations were quantified using ELISA and CLIA, respectively. Additionally, testicular tissues were collected for morphological examination. The results revealed a significant increase in serum GnRH antibody titers (<i>p</i> < 0.05), but a significant decrease in serum testosterone concentrations (<i>p</i> < 0.05), and the weight, length, width, and girth of the testis, and the number of spermatogonia cells, spermatocytes, and sperm cells in the immunized rats. Furthermore, seminiferous tubules revealed significant atrophy and no sperm were observed in the immunized animals. Thus, GnRH6-CRM197 may be an effective antigen and a potential immunocastration vaccine.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"70 1","pages":"131-138"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active immunization with recombinant GnRH6-CRM197 inhibits reproductive function of male rats.\",\"authors\":\"XinBao Gong, Xu Yan, MengXian Li, MoYan Di, JunTai Lu, ShuangShuang Xu, ZhiHao Pan, YanYun Zhu, ZhuoYa Wu, Wei Zhang, Ping Qin, Ya Liu, YunSheng Li, FuGui Fang\",\"doi\":\"10.1080/19396368.2024.2350372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gonadotropin-releasing hormone (GnRH) vaccines have been successfully used for the inhibition of gonadal development and function, but current GnRH-based vaccines often present variability in the response. Cross-reactive material 197 (CRM197) has been used as carrier molecules to enhance an immune response to associated antigens. So, the synthetic mammalian tandem-repeated GnRH hexamer (GnRH6) gene was integrated into the expression plasmid pET-21a. Recombinant GnRH6-CRM197 protein was subsequently overexpressed in Escherichia coli strain BL21 and purified through Nickel column affinity chromatography and the antigenicity and biological effects of GnRH6-CRM197 were evaluated in rats. Sixteen 4-month-old adult male rats were randomly divided into two groups: the GnRH6-CRM197 group (<i>n</i> = 8) and the control group (<i>n</i> = 8). The GnRH6-CRM197 group rats were subcutaneously immunized with 100 μg of GnRH6-CRM197, administered thrice at 2-week intervals with GnRH6-CRM197.The control group received only a white oil adjuvant. Following the initial immunization, the weights of animals were recorded, and blood samples were collected from the orbital sinus at 4, 4.5, 5, 5.5, 6, 6.5, and 7 months. Serum antibody titers and testosterone concentrations were quantified using ELISA and CLIA, respectively. Additionally, testicular tissues were collected for morphological examination. The results revealed a significant increase in serum GnRH antibody titers (<i>p</i> < 0.05), but a significant decrease in serum testosterone concentrations (<i>p</i> < 0.05), and the weight, length, width, and girth of the testis, and the number of spermatogonia cells, spermatocytes, and sperm cells in the immunized rats. Furthermore, seminiferous tubules revealed significant atrophy and no sperm were observed in the immunized animals. Thus, GnRH6-CRM197 may be an effective antigen and a potential immunocastration vaccine.</p>\",\"PeriodicalId\":22184,\"journal\":{\"name\":\"Systems Biology in Reproductive Medicine\",\"volume\":\"70 1\",\"pages\":\"131-138\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Biology in Reproductive Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19396368.2024.2350372\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ANDROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2024.2350372","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
Active immunization with recombinant GnRH6-CRM197 inhibits reproductive function of male rats.
Gonadotropin-releasing hormone (GnRH) vaccines have been successfully used for the inhibition of gonadal development and function, but current GnRH-based vaccines often present variability in the response. Cross-reactive material 197 (CRM197) has been used as carrier molecules to enhance an immune response to associated antigens. So, the synthetic mammalian tandem-repeated GnRH hexamer (GnRH6) gene was integrated into the expression plasmid pET-21a. Recombinant GnRH6-CRM197 protein was subsequently overexpressed in Escherichia coli strain BL21 and purified through Nickel column affinity chromatography and the antigenicity and biological effects of GnRH6-CRM197 were evaluated in rats. Sixteen 4-month-old adult male rats were randomly divided into two groups: the GnRH6-CRM197 group (n = 8) and the control group (n = 8). The GnRH6-CRM197 group rats were subcutaneously immunized with 100 μg of GnRH6-CRM197, administered thrice at 2-week intervals with GnRH6-CRM197.The control group received only a white oil adjuvant. Following the initial immunization, the weights of animals were recorded, and blood samples were collected from the orbital sinus at 4, 4.5, 5, 5.5, 6, 6.5, and 7 months. Serum antibody titers and testosterone concentrations were quantified using ELISA and CLIA, respectively. Additionally, testicular tissues were collected for morphological examination. The results revealed a significant increase in serum GnRH antibody titers (p < 0.05), but a significant decrease in serum testosterone concentrations (p < 0.05), and the weight, length, width, and girth of the testis, and the number of spermatogonia cells, spermatocytes, and sperm cells in the immunized rats. Furthermore, seminiferous tubules revealed significant atrophy and no sperm were observed in the immunized animals. Thus, GnRH6-CRM197 may be an effective antigen and a potential immunocastration vaccine.
期刊介绍:
Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.