考虑热应力和表面相互作用的热接触传导分形模型

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2024-06-05 DOI:10.1016/j.ijheatmasstransfer.2024.125787
Yu Cheng , Zhenping Wan , Xiaoming Feng , Yuanxiang Long
{"title":"考虑热应力和表面相互作用的热接触传导分形模型","authors":"Yu Cheng ,&nbsp;Zhenping Wan ,&nbsp;Xiaoming Feng ,&nbsp;Yuanxiang Long","doi":"10.1016/j.ijheatmasstransfer.2024.125787","DOIUrl":null,"url":null,"abstract":"<div><p>The thermal contact conductance (TCC) of rough surfaces is a fundamental issue in heat transfer. Thermal stress and asperity interactions have important impacts on the TCC. A new fractal model for predicting the TCC that considers thermal stress and asperity interactions is developed. First, an improved normal contact mechanics model is constructed that considers the asperity deformation, thermal stress, and interactions of a single asperity from a microscopic viewpoint. Then, a new TCC prediction model is proposed according to the improved contact mechanics model and classical heat conduction theory. Furthermore, the predicted values of the TCC are compared with published experimental results and reported models. Finally, the influences of surface topography, temperature differences, and material properties on the TCC are further revealed. This study can provide deep insight into the thermal design of sophisticated equipment.</p></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal model of thermal contact conductance considering thermal stress and asperity interactions\",\"authors\":\"Yu Cheng ,&nbsp;Zhenping Wan ,&nbsp;Xiaoming Feng ,&nbsp;Yuanxiang Long\",\"doi\":\"10.1016/j.ijheatmasstransfer.2024.125787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The thermal contact conductance (TCC) of rough surfaces is a fundamental issue in heat transfer. Thermal stress and asperity interactions have important impacts on the TCC. A new fractal model for predicting the TCC that considers thermal stress and asperity interactions is developed. First, an improved normal contact mechanics model is constructed that considers the asperity deformation, thermal stress, and interactions of a single asperity from a microscopic viewpoint. Then, a new TCC prediction model is proposed according to the improved contact mechanics model and classical heat conduction theory. Furthermore, the predicted values of the TCC are compared with published experimental results and reported models. Finally, the influences of surface topography, temperature differences, and material properties on the TCC are further revealed. This study can provide deep insight into the thermal design of sophisticated equipment.</p></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931024006185\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024006185","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

粗糙表面的热接触传导(TCC)是热传递中的一个基本问题。热应力和晶面相互作用对 TCC 有重要影响。本文开发了一种新的分形模型,用于预测考虑了热应力和非晶体相互作用的 TCC。首先,构建了一个改进的法向接触力学模型,该模型从微观角度考虑了非晶体变形、热应力和单个非晶体的相互作用。然后,根据改进的接触力学模型和经典热传导理论,提出了一个新的 TCC 预测模型。此外,还将 TCC 的预测值与已公布的实验结果和已报道的模型进行了比较。最后,进一步揭示了表面形貌、温差和材料特性对 TCC 的影响。这项研究可为精密设备的热设计提供深刻见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractal model of thermal contact conductance considering thermal stress and asperity interactions

The thermal contact conductance (TCC) of rough surfaces is a fundamental issue in heat transfer. Thermal stress and asperity interactions have important impacts on the TCC. A new fractal model for predicting the TCC that considers thermal stress and asperity interactions is developed. First, an improved normal contact mechanics model is constructed that considers the asperity deformation, thermal stress, and interactions of a single asperity from a microscopic viewpoint. Then, a new TCC prediction model is proposed according to the improved contact mechanics model and classical heat conduction theory. Furthermore, the predicted values of the TCC are compared with published experimental results and reported models. Finally, the influences of surface topography, temperature differences, and material properties on the TCC are further revealed. This study can provide deep insight into the thermal design of sophisticated equipment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Bridging the gap: Unraveling the role of nano-gas nuclei in the non-equilibrium water-vapor phase transition Investigation of thermal-hydraulic performance of circular, elliptical & mixed circular-elliptical tube bundles for two-phase cross-flow boiling Mechanistic investigation of nucleation kinetics in heterogeneous ice crystallization: the role of cooling rate, surface energy, surface nanostructure, and wetting state Effect of van der Waals interaction on thermal expansion and thermal conductivity of graphite predicted from density-functional theory Modeling the trade-off between performance and pressure drop of bimodal pore size electrodes in vanadium redox flow batteries: Parallel vs. Series arrangement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1