具有不确定需求、电动汽车、储能和可再生能源的弹性日前微电网能源管理

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL Cleaner Engineering and Technology Pub Date : 2024-06-01 DOI:10.1016/j.clet.2024.100763
Ahmad Niknami , Mohammad Tolou Askari , Meysam Amir Ahmadi , Majid Babaei Nik , Mahmoud Samiei Moghaddam
{"title":"具有不确定需求、电动汽车、储能和可再生能源的弹性日前微电网能源管理","authors":"Ahmad Niknami ,&nbsp;Mohammad Tolou Askari ,&nbsp;Meysam Amir Ahmadi ,&nbsp;Majid Babaei Nik ,&nbsp;Mahmoud Samiei Moghaddam","doi":"10.1016/j.clet.2024.100763","DOIUrl":null,"url":null,"abstract":"<div><p>Managing microgrid energy presents a complex challenge due to unpredictable renewable sources, fluctuating demand, and diverse equipment like batteries, distributed generators, and electric vehicles. This paper introduces a novel two-step optimization model, the Robust Day-Ahead Scheduling for Enhanced Resilience, tailored for microgrid operations. The model addresses the integration of electronic generation, uncertain demand patterns, and small-scale renewable resources. Detailed formulations optimize microgrid energy use, including strategic battery usage, efficient electric vehicle charging, balancing device utilization, and distributed generation dispatch. This multi-faceted approach aims to minimize costs over 24 h, including energy loss, power purchases, reduced power usage, generator operation, and battery/EV expenses. Employing a column-and-constraint generation (C&amp;CG) algorithm ensures efficient problem solving. The proposed model achieved a significant reduction in operational costs, outperforming existing methods by at least 8%. Notably, it minimized energy purchases, energy losses, and load shedding while improving voltage stability, showcasing its effectiveness in enhancing microgrid performance and resilience.</p></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"20 ","pages":"Article 100763"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666790824000430/pdfft?md5=078f8a297c6e6e48752c444a4d30b391&pid=1-s2.0-S2666790824000430-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Resilient day-ahead microgrid energy management with uncertain demand, EVs, storage, and renewables\",\"authors\":\"Ahmad Niknami ,&nbsp;Mohammad Tolou Askari ,&nbsp;Meysam Amir Ahmadi ,&nbsp;Majid Babaei Nik ,&nbsp;Mahmoud Samiei Moghaddam\",\"doi\":\"10.1016/j.clet.2024.100763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Managing microgrid energy presents a complex challenge due to unpredictable renewable sources, fluctuating demand, and diverse equipment like batteries, distributed generators, and electric vehicles. This paper introduces a novel two-step optimization model, the Robust Day-Ahead Scheduling for Enhanced Resilience, tailored for microgrid operations. The model addresses the integration of electronic generation, uncertain demand patterns, and small-scale renewable resources. Detailed formulations optimize microgrid energy use, including strategic battery usage, efficient electric vehicle charging, balancing device utilization, and distributed generation dispatch. This multi-faceted approach aims to minimize costs over 24 h, including energy loss, power purchases, reduced power usage, generator operation, and battery/EV expenses. Employing a column-and-constraint generation (C&amp;CG) algorithm ensures efficient problem solving. The proposed model achieved a significant reduction in operational costs, outperforming existing methods by at least 8%. Notably, it minimized energy purchases, energy losses, and load shedding while improving voltage stability, showcasing its effectiveness in enhancing microgrid performance and resilience.</p></div>\",\"PeriodicalId\":34618,\"journal\":{\"name\":\"Cleaner Engineering and Technology\",\"volume\":\"20 \",\"pages\":\"Article 100763\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666790824000430/pdfft?md5=078f8a297c6e6e48752c444a4d30b391&pid=1-s2.0-S2666790824000430-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666790824000430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824000430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

由于不可预测的可再生能源、波动的需求以及电池、分布式发电机和电动汽车等多样化的设备,微电网能源管理面临着复杂的挑战。本文介绍了一种专为微电网运行量身定制的新型两步优化模型--"增强弹性的稳健提前调度"。该模型解决了电子发电、不确定需求模式和小型可再生资源的整合问题。详细的公式优化了微电网的能源使用,包括电池的战略性使用、电动汽车的高效充电、平衡装置的利用以及分布式发电调度。这种多方面的方法旨在最大限度地降低 24 小时内的成本,包括能源损耗、电力采购、减少电力使用、发电机运行和电池/电动汽车支出。采用列和约束生成(C&CG)算法可确保高效解决问题。所提出的模型显著降低了运营成本,比现有方法至少高出 8%。值得注意的是,它最大限度地减少了能源采购、能源损耗和甩负荷,同时提高了电压稳定性,展示了其在提高微电网性能和弹性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resilient day-ahead microgrid energy management with uncertain demand, EVs, storage, and renewables

Managing microgrid energy presents a complex challenge due to unpredictable renewable sources, fluctuating demand, and diverse equipment like batteries, distributed generators, and electric vehicles. This paper introduces a novel two-step optimization model, the Robust Day-Ahead Scheduling for Enhanced Resilience, tailored for microgrid operations. The model addresses the integration of electronic generation, uncertain demand patterns, and small-scale renewable resources. Detailed formulations optimize microgrid energy use, including strategic battery usage, efficient electric vehicle charging, balancing device utilization, and distributed generation dispatch. This multi-faceted approach aims to minimize costs over 24 h, including energy loss, power purchases, reduced power usage, generator operation, and battery/EV expenses. Employing a column-and-constraint generation (C&CG) algorithm ensures efficient problem solving. The proposed model achieved a significant reduction in operational costs, outperforming existing methods by at least 8%. Notably, it minimized energy purchases, energy losses, and load shedding while improving voltage stability, showcasing its effectiveness in enhancing microgrid performance and resilience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
期刊最新文献
Guidelines for implementing cleaner production strategies in a natural rubber gloves manufacturing industry How does the use of cryptocurrency affect circular economy practices in Iranian manufacturing companies? Optimization of alkali-activated ladle slag-fly ash composites using a Taguchi-TOPSIS hybrid algorithm The effects of joint process parameters of two-step manufacturing processes on the mechanical performance of biocomposites using Taguchi and multiple regression techniques A tiered NARX model for forecasting day-ahead energy production in distributed solar PV systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1