Jiang Xiaofei , Wang Jizhi , Yang Yuanqin , Liu Pan , Deng Guo , Yao Shuang , Xiao Yang
{"title":"静态 \"大气中的波动及其对对流层臭氧分布的影响","authors":"Jiang Xiaofei , Wang Jizhi , Yang Yuanqin , Liu Pan , Deng Guo , Yao Shuang , Xiao Yang","doi":"10.1016/j.jastp.2024.106268","DOIUrl":null,"url":null,"abstract":"<div><p>Atmospheric fluctuation can be seen everywhere. This study focuses on the record-breaking increase of O<sub>3</sub> concentration during the summer in some sensitive areas in recent years. The findings indicate that in the vicinity of the East Asian continent near western Pacific ocean, when the atmospheric conditions are stable or neutral, it is conducive to the maintenance and propagation of atmospheric oscillations near the height of the pollutant mixed layer (H_PML). Accompanied by the \"peak-trough\" effect of external gravity wave oscillations, due to the abundant water vapor of the cloud system (there are low pressure or typhoon disturbances in summer) near the large-scale cloud belt at the edge of the subtropical high in the western Pacific, the bright temperature at cloud top shows \"light and dark changes\" on satellite images, forming a wave-like cloud system. The novelty of this study lies in the fact that atmospheric fluctuations near the H_PML is not only related to the known aggravation of heavy rainfall, but also leads to the additional value-added effect of aerosols. Under static atmospheric conditions, the impact of atmospheric fluctuations near the H_PML on additional rise of O<sub>3</sub> concentration helps us to deepen our understanding of the so-called \"entrained ozone (EZ) effect\" in the atmosphere. Due to the external gravity waves, the concentration of O<sub>3</sub> increased further. Diurnal variations of solar zenith angle and H_PML are key meteorological factors influencing the significant increase in near-surface O<sub>3</sub> concentration entrainment. The formation mechanism of solar photochemical O<sub>3</sub> is further deepened and supplemented by analyzing the record-breaking increase of O<sub>3</sub> concentration in summer observed in recent years.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"260 ","pages":"Article 106268"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluctuations in the “static” atmosphere and their effects on tropospheric ozone distribution\",\"authors\":\"Jiang Xiaofei , Wang Jizhi , Yang Yuanqin , Liu Pan , Deng Guo , Yao Shuang , Xiao Yang\",\"doi\":\"10.1016/j.jastp.2024.106268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atmospheric fluctuation can be seen everywhere. This study focuses on the record-breaking increase of O<sub>3</sub> concentration during the summer in some sensitive areas in recent years. The findings indicate that in the vicinity of the East Asian continent near western Pacific ocean, when the atmospheric conditions are stable or neutral, it is conducive to the maintenance and propagation of atmospheric oscillations near the height of the pollutant mixed layer (H_PML). Accompanied by the \\\"peak-trough\\\" effect of external gravity wave oscillations, due to the abundant water vapor of the cloud system (there are low pressure or typhoon disturbances in summer) near the large-scale cloud belt at the edge of the subtropical high in the western Pacific, the bright temperature at cloud top shows \\\"light and dark changes\\\" on satellite images, forming a wave-like cloud system. The novelty of this study lies in the fact that atmospheric fluctuations near the H_PML is not only related to the known aggravation of heavy rainfall, but also leads to the additional value-added effect of aerosols. Under static atmospheric conditions, the impact of atmospheric fluctuations near the H_PML on additional rise of O<sub>3</sub> concentration helps us to deepen our understanding of the so-called \\\"entrained ozone (EZ) effect\\\" in the atmosphere. Due to the external gravity waves, the concentration of O<sub>3</sub> increased further. Diurnal variations of solar zenith angle and H_PML are key meteorological factors influencing the significant increase in near-surface O<sub>3</sub> concentration entrainment. The formation mechanism of solar photochemical O<sub>3</sub> is further deepened and supplemented by analyzing the record-breaking increase of O<sub>3</sub> concentration in summer observed in recent years.</p></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"260 \",\"pages\":\"Article 106268\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624000968\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624000968","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Fluctuations in the “static” atmosphere and their effects on tropospheric ozone distribution
Atmospheric fluctuation can be seen everywhere. This study focuses on the record-breaking increase of O3 concentration during the summer in some sensitive areas in recent years. The findings indicate that in the vicinity of the East Asian continent near western Pacific ocean, when the atmospheric conditions are stable or neutral, it is conducive to the maintenance and propagation of atmospheric oscillations near the height of the pollutant mixed layer (H_PML). Accompanied by the "peak-trough" effect of external gravity wave oscillations, due to the abundant water vapor of the cloud system (there are low pressure or typhoon disturbances in summer) near the large-scale cloud belt at the edge of the subtropical high in the western Pacific, the bright temperature at cloud top shows "light and dark changes" on satellite images, forming a wave-like cloud system. The novelty of this study lies in the fact that atmospheric fluctuations near the H_PML is not only related to the known aggravation of heavy rainfall, but also leads to the additional value-added effect of aerosols. Under static atmospheric conditions, the impact of atmospheric fluctuations near the H_PML on additional rise of O3 concentration helps us to deepen our understanding of the so-called "entrained ozone (EZ) effect" in the atmosphere. Due to the external gravity waves, the concentration of O3 increased further. Diurnal variations of solar zenith angle and H_PML are key meteorological factors influencing the significant increase in near-surface O3 concentration entrainment. The formation mechanism of solar photochemical O3 is further deepened and supplemented by analyzing the record-breaking increase of O3 concentration in summer observed in recent years.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.