Mingjie Li , Yunhan Liu , Weiwei Jiang , Yuxuan Zhu , Jiuchuan Jiang , Mingfeng Jiang , Shuqing Li
{"title":"基于生成式对抗网络的协同过滤推荐中的改进负抽样方法","authors":"Mingjie Li , Yunhan Liu , Weiwei Jiang , Yuxuan Zhu , Jiuchuan Jiang , Mingfeng Jiang , Shuqing Li","doi":"10.1016/j.elerap.2024.101412","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>The problem of low model performance caused by the lack of negative samples in the recommendation method based on implicit feedback information can be solved.</p></div><div><h3>Methods</h3><p>The implicit feedback recommendation model DAEGAN is constructed based on the conditional generative adversarial network framework. The Denoising Auto-Encoder is used as a generator to capture nonlinear potential factors in the interaction and improve the robustness of model. In this paper, a strong and weak negative sampling strategy is proposed, which combines the visibility of user in time points to mine uninteresting items and acquire strong negative samples, and injects these information into the model by modifying the masking mechanism to solve the problem of missing negative samples.</p></div><div><h3>Results</h3><p>Experiments on MovieLens 100 K, Amazon Movie and TV, MovieLens 1 M datasets show that the recommendation accuracy of CFGAN based on strong and weak negative sampling and DAEGAN proposed in this paper has been improved.</p></div><div><h3>Limitations</h3><p>The generation of strong negative samples is based on user interaction records, which cannot solve effectively cold start problems in extremely sparse data.</p></div><div><h3>Conclusions</h3><p>After DAEGAN application, the strong and weak negative sampling method proposed in this paper has generally higher recommendation accuracy than those mainstream recommendation algorithms. The code is available at <span>https://github.com/nanjingzhuyuxuan/DAEGAN</span><svg><path></path></svg>.</p></div>","PeriodicalId":50541,"journal":{"name":"Electronic Commerce Research and Applications","volume":"66 ","pages":"Article 101412"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved negative sampling method in collaborative filtering recommendation based on Generative adversarial network\",\"authors\":\"Mingjie Li , Yunhan Liu , Weiwei Jiang , Yuxuan Zhu , Jiuchuan Jiang , Mingfeng Jiang , Shuqing Li\",\"doi\":\"10.1016/j.elerap.2024.101412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>The problem of low model performance caused by the lack of negative samples in the recommendation method based on implicit feedback information can be solved.</p></div><div><h3>Methods</h3><p>The implicit feedback recommendation model DAEGAN is constructed based on the conditional generative adversarial network framework. The Denoising Auto-Encoder is used as a generator to capture nonlinear potential factors in the interaction and improve the robustness of model. In this paper, a strong and weak negative sampling strategy is proposed, which combines the visibility of user in time points to mine uninteresting items and acquire strong negative samples, and injects these information into the model by modifying the masking mechanism to solve the problem of missing negative samples.</p></div><div><h3>Results</h3><p>Experiments on MovieLens 100 K, Amazon Movie and TV, MovieLens 1 M datasets show that the recommendation accuracy of CFGAN based on strong and weak negative sampling and DAEGAN proposed in this paper has been improved.</p></div><div><h3>Limitations</h3><p>The generation of strong negative samples is based on user interaction records, which cannot solve effectively cold start problems in extremely sparse data.</p></div><div><h3>Conclusions</h3><p>After DAEGAN application, the strong and weak negative sampling method proposed in this paper has generally higher recommendation accuracy than those mainstream recommendation algorithms. The code is available at <span>https://github.com/nanjingzhuyuxuan/DAEGAN</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":50541,\"journal\":{\"name\":\"Electronic Commerce Research and Applications\",\"volume\":\"66 \",\"pages\":\"Article 101412\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Commerce Research and Applications\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567422324000577\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Commerce Research and Applications","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567422324000577","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
摘要
方法基于条件生成对抗网络框架构建了隐式反馈推荐模型 DAEGAN。采用去噪自动编码器作为生成器,捕捉交互中的非线性潜在因素,提高模型的鲁棒性。结果在 MovieLens 100 K、Amazon Movie and TV、MovieLens 1 M 数据集上的实验表明,基于强弱负采样的 CFGAN 和本文提出的 DAEGAN 的推荐准确率得到了提高。局限性强负样本的生成基于用户交互记录,无法有效解决极度稀疏数据中的冷启动问题。结论在 DAEGAN 应用后,本文提出的强弱负采样方法的推荐准确率普遍高于主流推荐算法。代码见 https://github.com/nanjingzhuyuxuan/DAEGAN。
Improved negative sampling method in collaborative filtering recommendation based on Generative adversarial network
Objective
The problem of low model performance caused by the lack of negative samples in the recommendation method based on implicit feedback information can be solved.
Methods
The implicit feedback recommendation model DAEGAN is constructed based on the conditional generative adversarial network framework. The Denoising Auto-Encoder is used as a generator to capture nonlinear potential factors in the interaction and improve the robustness of model. In this paper, a strong and weak negative sampling strategy is proposed, which combines the visibility of user in time points to mine uninteresting items and acquire strong negative samples, and injects these information into the model by modifying the masking mechanism to solve the problem of missing negative samples.
Results
Experiments on MovieLens 100 K, Amazon Movie and TV, MovieLens 1 M datasets show that the recommendation accuracy of CFGAN based on strong and weak negative sampling and DAEGAN proposed in this paper has been improved.
Limitations
The generation of strong negative samples is based on user interaction records, which cannot solve effectively cold start problems in extremely sparse data.
Conclusions
After DAEGAN application, the strong and weak negative sampling method proposed in this paper has generally higher recommendation accuracy than those mainstream recommendation algorithms. The code is available at https://github.com/nanjingzhuyuxuan/DAEGAN.
期刊介绍:
Electronic Commerce Research and Applications aims to create and disseminate enduring knowledge for the fast-changing e-commerce environment. A major dilemma in e-commerce research is how to achieve a balance between the currency and the life span of knowledge.
Electronic Commerce Research and Applications will contribute to the establishment of a research community to create the knowledge, technology, theory, and applications for the development of electronic commerce. This is targeted at the intersection of technological potential and business aims.