{"title":"化合细胞聚集被视为不稳定性和相分离","authors":"Kyunghan Choi, Yong-Jung Kim","doi":"10.1016/j.nonrwa.2024.104147","DOIUrl":null,"url":null,"abstract":"<div><p>The paper focuses on the pattern formation of a chemotactic cell aggregation model with a mechanism that density suppresses motility. The model exhibits four types of cell aggregation patterns: single-point peaks, hot spots, cold spots, and stripes, depending on the parameters and mean density. The analysis is performed in two ways. First, traditional instability analysis reveals the existence of two critical densities. This local analysis shows patterns emerge if the initial mean density lies between the two values. Second, a phase separation method using van der Waals’ double well potential reveals that pattern formation is possible in a bigger parameter regime that includes the one identified by the local analysis. This non-local analysis shows that pattern formation occurs beyond the parameter regimes of the classical local instability analysis.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104147"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemotactic cell aggregation viewed as instability and phase separation\",\"authors\":\"Kyunghan Choi, Yong-Jung Kim\",\"doi\":\"10.1016/j.nonrwa.2024.104147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper focuses on the pattern formation of a chemotactic cell aggregation model with a mechanism that density suppresses motility. The model exhibits four types of cell aggregation patterns: single-point peaks, hot spots, cold spots, and stripes, depending on the parameters and mean density. The analysis is performed in two ways. First, traditional instability analysis reveals the existence of two critical densities. This local analysis shows patterns emerge if the initial mean density lies between the two values. Second, a phase separation method using van der Waals’ double well potential reveals that pattern formation is possible in a bigger parameter regime that includes the one identified by the local analysis. This non-local analysis shows that pattern formation occurs beyond the parameter regimes of the classical local instability analysis.</p></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"80 \",\"pages\":\"Article 104147\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824000877\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000877","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Chemotactic cell aggregation viewed as instability and phase separation
The paper focuses on the pattern formation of a chemotactic cell aggregation model with a mechanism that density suppresses motility. The model exhibits four types of cell aggregation patterns: single-point peaks, hot spots, cold spots, and stripes, depending on the parameters and mean density. The analysis is performed in two ways. First, traditional instability analysis reveals the existence of two critical densities. This local analysis shows patterns emerge if the initial mean density lies between the two values. Second, a phase separation method using van der Waals’ double well potential reveals that pattern formation is possible in a bigger parameter regime that includes the one identified by the local analysis. This non-local analysis shows that pattern formation occurs beyond the parameter regimes of the classical local instability analysis.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.