以科学为导向的生物小角中子散射仪器优化设计方法

IF 5.2 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Applied Crystallography Pub Date : 2024-05-31 DOI:10.1107/S1600576724004254
Christoph U. Wildgruber, Shuo Qian, Serena H. Chen, Kenneth W. Herwig, Volker S. Urban, Hugh O'Neill
{"title":"以科学为导向的生物小角中子散射仪器优化设计方法","authors":"Christoph U. Wildgruber,&nbsp;Shuo Qian,&nbsp;Serena H. Chen,&nbsp;Kenneth W. Herwig,&nbsp;Volker S. Urban,&nbsp;Hugh O'Neill","doi":"10.1107/S1600576724004254","DOIUrl":null,"url":null,"abstract":"<p>Biological small-angle neutron scattering (SANS) instruments facilitate critical analysis of the structure and dynamics of complex biological systems. However, with the growth of experimental demands and the advances in optical systems design, a new neutron optical concept is necessary to overcome the limitations of current instruments. This work presents an approach to include experimental objectives (<i>i.e.</i> the science to be supported by a specific neutron scattering instrument) in the optimization of the neutron optical concept. The approach for a proposed SANS instrument at the Second Target Station of the Spallation Neutron Source at Oak Ridge National Laboratory, USA, is presented here. The instrument is simulated with the <i>McStas</i> software package. The optimization process is driven by an evolutionary algorithm using <i>McStas</i> output data, which are processed to calculate an objective function designed to quantify the expected performance of the simulated neutron optical configuration for the intended purpose. Each <i>McStas</i> simulation covers the complete instrument, from source to detector, including realistic sample scattering functions. This approach effectively navigates a high-dimensional parameter space that is otherwise intractable; it allows the design of next-generation SANS instruments to address specific scientific cases and has the potential to increase instrument performance compared with traditional design approaches.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 3","pages":"818-830"},"PeriodicalIF":5.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A science-driven approach to optimize the design for a biological small-angle neutron scattering instrument\",\"authors\":\"Christoph U. Wildgruber,&nbsp;Shuo Qian,&nbsp;Serena H. Chen,&nbsp;Kenneth W. Herwig,&nbsp;Volker S. Urban,&nbsp;Hugh O'Neill\",\"doi\":\"10.1107/S1600576724004254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biological small-angle neutron scattering (SANS) instruments facilitate critical analysis of the structure and dynamics of complex biological systems. However, with the growth of experimental demands and the advances in optical systems design, a new neutron optical concept is necessary to overcome the limitations of current instruments. This work presents an approach to include experimental objectives (<i>i.e.</i> the science to be supported by a specific neutron scattering instrument) in the optimization of the neutron optical concept. The approach for a proposed SANS instrument at the Second Target Station of the Spallation Neutron Source at Oak Ridge National Laboratory, USA, is presented here. The instrument is simulated with the <i>McStas</i> software package. The optimization process is driven by an evolutionary algorithm using <i>McStas</i> output data, which are processed to calculate an objective function designed to quantify the expected performance of the simulated neutron optical configuration for the intended purpose. Each <i>McStas</i> simulation covers the complete instrument, from source to detector, including realistic sample scattering functions. This approach effectively navigates a high-dimensional parameter space that is otherwise intractable; it allows the design of next-generation SANS instruments to address specific scientific cases and has the potential to increase instrument performance compared with traditional design approaches.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"57 3\",\"pages\":\"818-830\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724004254\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724004254","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物小角中子散射(SANS)仪器有助于对复杂生物系统的结构和动力学进行关键分析。然而,随着实验需求的增长和光学系统设计的进步,需要一种新的中子光学概念来克服现有仪器的局限性。这项工作提出了一种将实验目标(即特定中子散射仪器支持的科学)纳入中子光学概念优化的方法。本文介绍了针对美国橡树岭国家实验室中子源第二靶站拟议的 SANS 仪器的方法。该仪器使用 McStas 软件包进行模拟。优化过程由演化算法驱动,使用 McStas 输出数据进行处理,以计算目标函数,该目标函数旨在量化模拟中子光学配置的预期性能,以达到预期目的。每个 McStas 模拟都涵盖从源头到探测器的整个仪器,包括现实的样品散射函数。这种方法可以有效地浏览高维参数空间,否则将难以处理;它允许设计下一代 SANS 仪器,以解决特定的科学问题,与传统的设计方法相比,有可能提高仪器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A science-driven approach to optimize the design for a biological small-angle neutron scattering instrument

Biological small-angle neutron scattering (SANS) instruments facilitate critical analysis of the structure and dynamics of complex biological systems. However, with the growth of experimental demands and the advances in optical systems design, a new neutron optical concept is necessary to overcome the limitations of current instruments. This work presents an approach to include experimental objectives (i.e. the science to be supported by a specific neutron scattering instrument) in the optimization of the neutron optical concept. The approach for a proposed SANS instrument at the Second Target Station of the Spallation Neutron Source at Oak Ridge National Laboratory, USA, is presented here. The instrument is simulated with the McStas software package. The optimization process is driven by an evolutionary algorithm using McStas output data, which are processed to calculate an objective function designed to quantify the expected performance of the simulated neutron optical configuration for the intended purpose. Each McStas simulation covers the complete instrument, from source to detector, including realistic sample scattering functions. This approach effectively navigates a high-dimensional parameter space that is otherwise intractable; it allows the design of next-generation SANS instruments to address specific scientific cases and has the potential to increase instrument performance compared with traditional design approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Crystallography
Journal of Applied Crystallography CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.80
自引率
3.30%
发文量
178
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
Simulation of diffraction patterns for Ruddlesden–Popper (RP) tetragonal structures with RP faults Data quality in laboratory convergent-beam X-ray total scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1