用于超稳定激光和光子毫米波合成的单片式光学谐振器

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-06-04 DOI:10.1038/s42005-024-01660-3
Wei Zhang, Eric Kittlaus, Anatoliy Savchenkov, Vladimir Iltchenko, Lin Yi, Scott B. Papp, Andrey Matsko
{"title":"用于超稳定激光和光子毫米波合成的单片式光学谐振器","authors":"Wei Zhang, Eric Kittlaus, Anatoliy Savchenkov, Vladimir Iltchenko, Lin Yi, Scott B. Papp, Andrey Matsko","doi":"10.1038/s42005-024-01660-3","DOIUrl":null,"url":null,"abstract":"Optical resonators are indispensable tools in optical metrology that usually benefit from an evacuated and highly-isolated environment to achieve peak performance. Even in the more sophisticated design of Fabry-Perot (FP) cavities, the material choice limits the achievable quality factors. For this reason, monolithic resonators are emerging as promising alternative to traditional designs, but their design is still at preliminary stage and far from being optimized. Here, we demonstrate a monolithic FP resonator with 4.5 cm3 volume and 2 × 105 finesse. In the ambient environment, we achieve 18 Hz integrated laser linewidth and 7 × 10−14 frequency stability measured from 0.08 s to 0.3 s averaging time, the highest spectral purity and stability demonstrated to date in the context of monolithic reference resonators. By locking two separate lasers to distinct modes of the same resonator, a 96 GHz microwave signals is generated with phase noise -100 dBc/Hz at 10 kHz frequency offset, achieving orders of magnitude improvement in the approach of photonic heterodyne synthesis. The compact monolithic FP resonator is promising for applications in spectrally-pure, high-frequency microwave photonic references as well as optical clocks and other metrological devices. ©2024. All rights reserved. Optical resonators are essential tools for high precision metrology and applications where the spectral purity is highly demanded. Here, the authors demonstrate a monolithic resonator made of fused silica to support 18 Hz integrated laser linewidth in the ambient environment, and W-band microwave generation with low phase noise of -100 dBc/Hz at 10 kHz frequency offset.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01660-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Monolithic optical resonator for ultrastable laser and photonic millimeter-wave synthesis\",\"authors\":\"Wei Zhang, Eric Kittlaus, Anatoliy Savchenkov, Vladimir Iltchenko, Lin Yi, Scott B. Papp, Andrey Matsko\",\"doi\":\"10.1038/s42005-024-01660-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical resonators are indispensable tools in optical metrology that usually benefit from an evacuated and highly-isolated environment to achieve peak performance. Even in the more sophisticated design of Fabry-Perot (FP) cavities, the material choice limits the achievable quality factors. For this reason, monolithic resonators are emerging as promising alternative to traditional designs, but their design is still at preliminary stage and far from being optimized. Here, we demonstrate a monolithic FP resonator with 4.5 cm3 volume and 2 × 105 finesse. In the ambient environment, we achieve 18 Hz integrated laser linewidth and 7 × 10−14 frequency stability measured from 0.08 s to 0.3 s averaging time, the highest spectral purity and stability demonstrated to date in the context of monolithic reference resonators. By locking two separate lasers to distinct modes of the same resonator, a 96 GHz microwave signals is generated with phase noise -100 dBc/Hz at 10 kHz frequency offset, achieving orders of magnitude improvement in the approach of photonic heterodyne synthesis. The compact monolithic FP resonator is promising for applications in spectrally-pure, high-frequency microwave photonic references as well as optical clocks and other metrological devices. ©2024. All rights reserved. Optical resonators are essential tools for high precision metrology and applications where the spectral purity is highly demanded. Here, the authors demonstrate a monolithic resonator made of fused silica to support 18 Hz integrated laser linewidth in the ambient environment, and W-band microwave generation with low phase noise of -100 dBc/Hz at 10 kHz frequency offset.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01660-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01660-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01660-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光学谐振器是光学计量领域不可或缺的工具,通常需要在抽空和高度隔离的环境中才能达到最佳性能。即使是设计更为复杂的法布里-珀罗(Fabry-Perot,FP)腔,材料的选择也限制了可实现的质量因素。因此,作为传统设计的替代品,单片谐振器正在崭露头角,但其设计仍处于初步阶段,远未得到优化。在这里,我们展示了一种体积为 4.5 cm3、纤度为 2 × 105 的单片 FP 谐振器。在环境中,我们实现了 18 Hz 的集成激光线宽和 7 × 10-14 的频率稳定性,测量范围从 0.08 秒到 0.3 秒的平均时间,这是迄今为止在单片参考谐振器方面展示的最高光谱纯度和稳定性。通过将两个独立的激光器锁定到同一谐振器的不同模式上,可产生 96 GHz 的微波信号,在 10 kHz 频率偏移时相位噪声为 -100 dBc/Hz,从而在光子外差合成方法上实现了数量级的改进。这种紧凑型单片 FP 谐振器有望应用于光谱纯净的高频微波光子基准以及光学时钟和其他计量设备。©2024.保留所有权利。光学谐振器是高精度计量和对光谱纯度要求极高的应用领域的重要工具。在此,作者展示了一种由熔融石英制成的单片谐振器,可支持环境中 18 Hz 的集成激光线宽,以及在 10 kHz 频率偏移下相位噪声低至 -100 dBc/Hz 的 W 波段微波发生器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monolithic optical resonator for ultrastable laser and photonic millimeter-wave synthesis
Optical resonators are indispensable tools in optical metrology that usually benefit from an evacuated and highly-isolated environment to achieve peak performance. Even in the more sophisticated design of Fabry-Perot (FP) cavities, the material choice limits the achievable quality factors. For this reason, monolithic resonators are emerging as promising alternative to traditional designs, but their design is still at preliminary stage and far from being optimized. Here, we demonstrate a monolithic FP resonator with 4.5 cm3 volume and 2 × 105 finesse. In the ambient environment, we achieve 18 Hz integrated laser linewidth and 7 × 10−14 frequency stability measured from 0.08 s to 0.3 s averaging time, the highest spectral purity and stability demonstrated to date in the context of monolithic reference resonators. By locking two separate lasers to distinct modes of the same resonator, a 96 GHz microwave signals is generated with phase noise -100 dBc/Hz at 10 kHz frequency offset, achieving orders of magnitude improvement in the approach of photonic heterodyne synthesis. The compact monolithic FP resonator is promising for applications in spectrally-pure, high-frequency microwave photonic references as well as optical clocks and other metrological devices. ©2024. All rights reserved. Optical resonators are essential tools for high precision metrology and applications where the spectral purity is highly demanded. Here, the authors demonstrate a monolithic resonator made of fused silica to support 18 Hz integrated laser linewidth in the ambient environment, and W-band microwave generation with low phase noise of -100 dBc/Hz at 10 kHz frequency offset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Morphometry on the sphere: Cartesian and irreducible Minkowski tensors explained and implemented Correlation-driven topological Kondo superconductors Cell stiffening is a label-free indicator of reactive oxygen species-induced intracellular acidification Mitigating density fluctuations in particle-based active nematic simulations Enhancing shift current response via virtual multiband transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1