Yanmei Chen, Sisi Lin, Lu Wang, Yifan Zhang, Huan Chen, Zhenzhen Fu, Mengmeng Zhang, Huilong Luo, Jinyao Liu
{"title":"通过粘液穿透性聚乙二醇化细菌强化肠粘膜屏障","authors":"Yanmei Chen, Sisi Lin, Lu Wang, Yifan Zhang, Huan Chen, Zhenzhen Fu, Mengmeng Zhang, Huilong Luo, Jinyao Liu","doi":"10.1038/s41551-024-01224-4","DOIUrl":null,"url":null,"abstract":"The breakdown of the gut’s mucosal barrier that prevents the infiltration of microorganisms, inflammatory cytokines and toxins into bodily tissues can lead to inflammatory bowel disease and to metabolic and autoimmune diseases. Here we show that the intestinal mucosal barrier can be reinforced via the oral administration of commensal bacteria coated with poly(ethylene glycol) (PEG) to facilitate their penetration into mucus. In mice with intestinal homoeostatic imbalance, mucus-penetrating PEGylated bacteria preferentially localized in mucus at the lower gastrointestinal tract, inhibited the invasion of pathogenic bacteria, maintained homoeostasis of the gut microbiota, stimulated the secretion of mucus and the expression of tight junctions, and prevented the mice from developing colitis and diabetes. Orally delivered PEGylated bacteria may help prevent and treat gastrointestinal disorders. The intestinal mucosal barrier can be reinforced via the oral administration of commensal bacteria coated with poly(ethylene glycol) to facilitate their penetration into mucus.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"8 7","pages":"823-841"},"PeriodicalIF":26.8000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement of the intestinal mucosal barrier via mucus-penetrating PEGylated bacteria\",\"authors\":\"Yanmei Chen, Sisi Lin, Lu Wang, Yifan Zhang, Huan Chen, Zhenzhen Fu, Mengmeng Zhang, Huilong Luo, Jinyao Liu\",\"doi\":\"10.1038/s41551-024-01224-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The breakdown of the gut’s mucosal barrier that prevents the infiltration of microorganisms, inflammatory cytokines and toxins into bodily tissues can lead to inflammatory bowel disease and to metabolic and autoimmune diseases. Here we show that the intestinal mucosal barrier can be reinforced via the oral administration of commensal bacteria coated with poly(ethylene glycol) (PEG) to facilitate their penetration into mucus. In mice with intestinal homoeostatic imbalance, mucus-penetrating PEGylated bacteria preferentially localized in mucus at the lower gastrointestinal tract, inhibited the invasion of pathogenic bacteria, maintained homoeostasis of the gut microbiota, stimulated the secretion of mucus and the expression of tight junctions, and prevented the mice from developing colitis and diabetes. Orally delivered PEGylated bacteria may help prevent and treat gastrointestinal disorders. The intestinal mucosal barrier can be reinforced via the oral administration of commensal bacteria coated with poly(ethylene glycol) to facilitate their penetration into mucus.\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"8 7\",\"pages\":\"823-841\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41551-024-01224-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41551-024-01224-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Reinforcement of the intestinal mucosal barrier via mucus-penetrating PEGylated bacteria
The breakdown of the gut’s mucosal barrier that prevents the infiltration of microorganisms, inflammatory cytokines and toxins into bodily tissues can lead to inflammatory bowel disease and to metabolic and autoimmune diseases. Here we show that the intestinal mucosal barrier can be reinforced via the oral administration of commensal bacteria coated with poly(ethylene glycol) (PEG) to facilitate their penetration into mucus. In mice with intestinal homoeostatic imbalance, mucus-penetrating PEGylated bacteria preferentially localized in mucus at the lower gastrointestinal tract, inhibited the invasion of pathogenic bacteria, maintained homoeostasis of the gut microbiota, stimulated the secretion of mucus and the expression of tight junctions, and prevented the mice from developing colitis and diabetes. Orally delivered PEGylated bacteria may help prevent and treat gastrointestinal disorders. The intestinal mucosal barrier can be reinforced via the oral administration of commensal bacteria coated with poly(ethylene glycol) to facilitate their penetration into mucus.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.