clauseSMT: 基于 NLSAT 的可满足性模态非线性实数算术理论的条款级框架

Zhonghan Wang
{"title":"clauseSMT: 基于 NLSAT 的可满足性模态非线性实数算术理论的条款级框架","authors":"Zhonghan Wang","doi":"arxiv-2406.02122","DOIUrl":null,"url":null,"abstract":"Model-constructing satisfiability calculus (MCSAT) framework has been applied\nto SMT problems on different arithmetic theories. NLSAT, an implementation\nusing cylindrical algebraic decomposition for explanation, is especially\ncompetitive among nonlinear real arithmetic constraints. However, current\nConflict-Driven Clause Learning (CDCL)-style algorithms only consider literal\ninformation for decision, and thus ignore clause-level influence on arithmetic\nvariables. As a consequence, NLSAT encounters unnecessary conflicts caused by\nimproper literal decisions. In this work, we analyze the literal decision caused conflicts, and introduce\nclause-level information with a direct effect on arithmetic variables. Two main\nalgorithm improvements are presented: clause-level feasible-set based\nlook-ahead mechanism and arithmetic propagation based branching heuristic. We\nimplement our solver named clauseSMT on our dynamic variable ordering\nframework. Experiments show that clauseSMT is competitive on nonlinear real\narithmetic theory against existing SMT solvers (cvc5, Z3, Yices2), and\noutperforms all these solvers on satisfiable instances of SMT(QF_NRA) in\nSMT-LIB. The effectiveness of our proposed methods are also studied.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"clauseSMT: A NLSAT-Based Clause-Level Framework for Satisfiability Modulo Nonlinear Real Arithmetic Theory\",\"authors\":\"Zhonghan Wang\",\"doi\":\"arxiv-2406.02122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model-constructing satisfiability calculus (MCSAT) framework has been applied\\nto SMT problems on different arithmetic theories. NLSAT, an implementation\\nusing cylindrical algebraic decomposition for explanation, is especially\\ncompetitive among nonlinear real arithmetic constraints. However, current\\nConflict-Driven Clause Learning (CDCL)-style algorithms only consider literal\\ninformation for decision, and thus ignore clause-level influence on arithmetic\\nvariables. As a consequence, NLSAT encounters unnecessary conflicts caused by\\nimproper literal decisions. In this work, we analyze the literal decision caused conflicts, and introduce\\nclause-level information with a direct effect on arithmetic variables. Two main\\nalgorithm improvements are presented: clause-level feasible-set based\\nlook-ahead mechanism and arithmetic propagation based branching heuristic. We\\nimplement our solver named clauseSMT on our dynamic variable ordering\\nframework. Experiments show that clauseSMT is competitive on nonlinear real\\narithmetic theory against existing SMT solvers (cvc5, Z3, Yices2), and\\noutperforms all these solvers on satisfiable instances of SMT(QF_NRA) in\\nSMT-LIB. The effectiveness of our proposed methods are also studied.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.02122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

模型构造可满足性微积分(MCSAT)框架已被应用于不同算术理论的 SMT 问题。NLSAT 是一种使用圆柱代数分解进行解释的实现方法,在非线性实算术约束中尤其具有竞争力。然而,目前的冲突驱动条款学习(Conflict-Driven Clause Learning,CDCL)式算法只考虑字面信息进行决策,从而忽略了条款层面对算术变量的影响。因此,NLSAT 会遇到因字面决策不当而导致的不必要冲突。在这项工作中,我们分析了字面决策引起的冲突,并引入了对算术变量有直接影响的条款级信息。我们提出了两个主要的算法改进:基于子句级可行集的前瞻机制和基于算术传播的分支启发式。我们在动态变量排序框架上实现了名为 clauseSMT 的求解器。实验表明,与现有的 SMT 求解器(cvc5、Z3、Yices2)相比,c clauseSMT 在非线性实数理论上具有竞争力,并且在 SMT-LIB 中的 SMT(QF_NRA)可满足实例上优于所有这些求解器。此外,还研究了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
clauseSMT: A NLSAT-Based Clause-Level Framework for Satisfiability Modulo Nonlinear Real Arithmetic Theory
Model-constructing satisfiability calculus (MCSAT) framework has been applied to SMT problems on different arithmetic theories. NLSAT, an implementation using cylindrical algebraic decomposition for explanation, is especially competitive among nonlinear real arithmetic constraints. However, current Conflict-Driven Clause Learning (CDCL)-style algorithms only consider literal information for decision, and thus ignore clause-level influence on arithmetic variables. As a consequence, NLSAT encounters unnecessary conflicts caused by improper literal decisions. In this work, we analyze the literal decision caused conflicts, and introduce clause-level information with a direct effect on arithmetic variables. Two main algorithm improvements are presented: clause-level feasible-set based look-ahead mechanism and arithmetic propagation based branching heuristic. We implement our solver named clauseSMT on our dynamic variable ordering framework. Experiments show that clauseSMT is competitive on nonlinear real arithmetic theory against existing SMT solvers (cvc5, Z3, Yices2), and outperforms all these solvers on satisfiable instances of SMT(QF_NRA) in SMT-LIB. The effectiveness of our proposed methods are also studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1