Farzad Kianvash, Marco Fanizza, Vittorio Giovannetti
{"title":"玻色高斯信道的低地/高地容量区域分析","authors":"Farzad Kianvash, Marco Fanizza, Vittorio Giovannetti","doi":"10.1142/s0219749924400057","DOIUrl":null,"url":null,"abstract":"<p>We present a comprehensive characterization of the interconnections between single-mode, phase-insensitive Gaussian Bosonic Channels resulting from channel concatenation. This characterization enables us to identify, in the parameter space of these maps, two distinct regions: low-ground and high-ground. In the low-ground region, the information capacities are smaller than a designated reference value, while in the high-ground region, they are provably greater. As a direct consequence, we systematically outline an explicit set of upper bounds for the quantum and private capacity of these maps, which combine known upper bounds and composition rules, improving upon existing results.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"52 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-ground/High-ground capacity regions analysis for bosonic gaussian channels\",\"authors\":\"Farzad Kianvash, Marco Fanizza, Vittorio Giovannetti\",\"doi\":\"10.1142/s0219749924400057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a comprehensive characterization of the interconnections between single-mode, phase-insensitive Gaussian Bosonic Channels resulting from channel concatenation. This characterization enables us to identify, in the parameter space of these maps, two distinct regions: low-ground and high-ground. In the low-ground region, the information capacities are smaller than a designated reference value, while in the high-ground region, they are provably greater. As a direct consequence, we systematically outline an explicit set of upper bounds for the quantum and private capacity of these maps, which combine known upper bounds and composition rules, improving upon existing results.</p>\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219749924400057\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219749924400057","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Low-ground/High-ground capacity regions analysis for bosonic gaussian channels
We present a comprehensive characterization of the interconnections between single-mode, phase-insensitive Gaussian Bosonic Channels resulting from channel concatenation. This characterization enables us to identify, in the parameter space of these maps, two distinct regions: low-ground and high-ground. In the low-ground region, the information capacities are smaller than a designated reference value, while in the high-ground region, they are provably greater. As a direct consequence, we systematically outline an explicit set of upper bounds for the quantum and private capacity of these maps, which combine known upper bounds and composition rules, improving upon existing results.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.