利用变异自动编码潜回归进行加速器系统参数估计

Mahindra Rautela, Alan Williams, Alexander Scheinker
{"title":"利用变异自动编码潜回归进行加速器系统参数估计","authors":"Mahindra Rautela, Alan Williams, Alexander Scheinker","doi":"arxiv-2406.01532","DOIUrl":null,"url":null,"abstract":"Particle accelerators are time-varying systems whose components are perturbed\nby external disturbances. Tuning accelerators can be a time-consuming process\ninvolving manual adjustment of multiple components, such as RF cavities, to\nminimize beam loss due to time-varying drifts. The high dimensionality of the\nsystem ($\\sim$100 amplitude and phase RF settings in the LANSCE accelerator)\nmakes it difficult to achieve optimal operation. The time-varying drifts and\nthe dimensionality make system parameter estimation a challenging optimization\nproblem. In this work, we propose a Variational Autoencoded Latent Regression\n(VALeR) model for robust estimation of system parameters using 2D unique\nprojections of a charged particle beam's 6D phase space. In VALeR, VAE projects\nthe phase space projections into a lower-dimensional latent space, and a dense\nneural network maps the latent space onto the space of system parameters. The\ntrained network can predict system parameters for unseen phase space\nprojections. Furthermore, VALeR can generate new projections by randomly\nsampling the latent space of VAE and also estimate the corresponding system\nparameters.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerator system parameter estimation using variational autoencoded latent regression\",\"authors\":\"Mahindra Rautela, Alan Williams, Alexander Scheinker\",\"doi\":\"arxiv-2406.01532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle accelerators are time-varying systems whose components are perturbed\\nby external disturbances. Tuning accelerators can be a time-consuming process\\ninvolving manual adjustment of multiple components, such as RF cavities, to\\nminimize beam loss due to time-varying drifts. The high dimensionality of the\\nsystem ($\\\\sim$100 amplitude and phase RF settings in the LANSCE accelerator)\\nmakes it difficult to achieve optimal operation. The time-varying drifts and\\nthe dimensionality make system parameter estimation a challenging optimization\\nproblem. In this work, we propose a Variational Autoencoded Latent Regression\\n(VALeR) model for robust estimation of system parameters using 2D unique\\nprojections of a charged particle beam's 6D phase space. In VALeR, VAE projects\\nthe phase space projections into a lower-dimensional latent space, and a dense\\nneural network maps the latent space onto the space of system parameters. The\\ntrained network can predict system parameters for unseen phase space\\nprojections. Furthermore, VALeR can generate new projections by randomly\\nsampling the latent space of VAE and also estimate the corresponding system\\nparameters.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.01532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粒子加速器是一种时变系统,其组件会受到外部干扰的扰动。调谐加速器可能是一个耗时的过程,需要手动调整射频腔等多个组件,以尽量减少时变漂移造成的光束损失。系统的高维度(LANSCE 加速器中的 100 美元振幅和相位射频设置)使其难以实现最佳运行。时变漂移和维度使得系统参数估计成为一个具有挑战性的优化问题。在这项工作中,我们提出了一种变异自动编码潜回归(VALeR)模型,利用带电粒子束 6D 相空间的 2D 唯一投影对系统参数进行稳健估计。在 VALeR 模型中,VAE 将相空间投影投射到低维潜在空间中,而密度神经网络则将潜在空间映射到系统参数空间中。经过训练的网络可以预测未知相空间投影的系统参数。此外,VALeR 还能通过对 VAE 的潜空间进行随机抽样生成新的投影,并估算相应的系统参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerator system parameter estimation using variational autoencoded latent regression
Particle accelerators are time-varying systems whose components are perturbed by external disturbances. Tuning accelerators can be a time-consuming process involving manual adjustment of multiple components, such as RF cavities, to minimize beam loss due to time-varying drifts. The high dimensionality of the system ($\sim$100 amplitude and phase RF settings in the LANSCE accelerator) makes it difficult to achieve optimal operation. The time-varying drifts and the dimensionality make system parameter estimation a challenging optimization problem. In this work, we propose a Variational Autoencoded Latent Regression (VALeR) model for robust estimation of system parameters using 2D unique projections of a charged particle beam's 6D phase space. In VALeR, VAE projects the phase space projections into a lower-dimensional latent space, and a dense neural network maps the latent space onto the space of system parameters. The trained network can predict system parameters for unseen phase space projections. Furthermore, VALeR can generate new projections by randomly sampling the latent space of VAE and also estimate the corresponding system parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1