从对比变化小角中子散射中获得的部分散射函数的误差评估

Koichi Mayumi, Shinya Miyajima, Ippei Obayashi, Kazuaki Tanaka
{"title":"从对比变化小角中子散射中获得的部分散射函数的误差评估","authors":"Koichi Mayumi, Shinya Miyajima, Ippei Obayashi, Kazuaki Tanaka","doi":"arxiv-2406.00311","DOIUrl":null,"url":null,"abstract":"Contrast variation small-angle neutron scattering (CV-SANS) is a powerful\ntool to evaluate the structure of multi-component systems by decomposing\nscattering intensities $I$ measured with different scattering contrasts into\npartial scattering functions $S$ of self- and cross-correlations between\ncomponents. The measured $I$ contains a measurement error, $\\Delta I$, and\n$\\Delta I$ results in an uncertainty of partial scattering functions, $\\Delta\nS$. However, the error propagation from $\\Delta I$ to $\\Delta S$ has not been\nquantitatively clarified. In this work, we have established deterministic and\nstatistical approaches to determine $\\Delta S$ from $\\Delta I$. We have applied\nthe two methods to experimental SANS data of polyrotaxane solutions with\ndifferent contrasts, and have successfully estimated the errors of $S$. The\nquantitative error estimation of $S$ offers us a strategy to optimize the\ncombination of scattering contrasts to minimize error propagation.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error evaluation of partial scattering functions obtained from contrast variation small-angle neutron scattering\",\"authors\":\"Koichi Mayumi, Shinya Miyajima, Ippei Obayashi, Kazuaki Tanaka\",\"doi\":\"arxiv-2406.00311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contrast variation small-angle neutron scattering (CV-SANS) is a powerful\\ntool to evaluate the structure of multi-component systems by decomposing\\nscattering intensities $I$ measured with different scattering contrasts into\\npartial scattering functions $S$ of self- and cross-correlations between\\ncomponents. The measured $I$ contains a measurement error, $\\\\Delta I$, and\\n$\\\\Delta I$ results in an uncertainty of partial scattering functions, $\\\\Delta\\nS$. However, the error propagation from $\\\\Delta I$ to $\\\\Delta S$ has not been\\nquantitatively clarified. In this work, we have established deterministic and\\nstatistical approaches to determine $\\\\Delta S$ from $\\\\Delta I$. We have applied\\nthe two methods to experimental SANS data of polyrotaxane solutions with\\ndifferent contrasts, and have successfully estimated the errors of $S$. The\\nquantitative error estimation of $S$ offers us a strategy to optimize the\\ncombination of scattering contrasts to minimize error propagation.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.00311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对比度变化小角中子散射(CV-SANS)是一种评估多组分系统结构的强大工具,它将不同散射对比度下测得的散射强度 $I$ 分解为各组分间自相关和交叉相关的部分散射函数 $S$。测得的 $I$ 包含测量误差,即 $\Delta I$,而 $\Delta I$ 则导致部分散射函数的不确定性,即 $/DeltaS$。然而,从 $\Delta I$ 到 $\Delta S$ 的误差传播尚未定量阐明。在这项工作中,我们建立了从 $\Delta I$ 确定 $\Delta S$ 的确定性方法和统计方法。我们将这两种方法应用于不同对比度的聚氧乙烯溶液的 SANS 实验数据,并成功地估算出了 $S$的误差。对 $S$ 的定量误差估计为我们提供了优化散射对比度组合的策略,使误差传播最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error evaluation of partial scattering functions obtained from contrast variation small-angle neutron scattering
Contrast variation small-angle neutron scattering (CV-SANS) is a powerful tool to evaluate the structure of multi-component systems by decomposing scattering intensities $I$ measured with different scattering contrasts into partial scattering functions $S$ of self- and cross-correlations between components. The measured $I$ contains a measurement error, $\Delta I$, and $\Delta I$ results in an uncertainty of partial scattering functions, $\Delta S$. However, the error propagation from $\Delta I$ to $\Delta S$ has not been quantitatively clarified. In this work, we have established deterministic and statistical approaches to determine $\Delta S$ from $\Delta I$. We have applied the two methods to experimental SANS data of polyrotaxane solutions with different contrasts, and have successfully estimated the errors of $S$. The quantitative error estimation of $S$ offers us a strategy to optimize the combination of scattering contrasts to minimize error propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1