{"title":"用于演示用凌日法探测系外行星的辐射测量模型","authors":"T M Seixas and M A Salgueiro da Silva","doi":"10.1088/1361-6552/ad4c46","DOIUrl":null,"url":null,"abstract":"This work describes an exact radiometric model for experimental demonstrators of the detection of exoplanets by the transit method. This model generalises the calculation of the depth of occultation from the standard transit method to the case of a finite size demonstrator apparatus. Results show that, for demonstrator apparatuses of moderately small sizes, a significant accuracy improvement in the determination of the size of a planet model can be achieved using the proposed method in comparison to using the formula from the standard transit method. The radiance distribution of the star model is found to be of crucial importance, as deviations from a Lambertian radiance distribution can lead to significantly different results.","PeriodicalId":39773,"journal":{"name":"Physics Education","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A radiometric model for demonstration of exoplanets detection by the transit method\",\"authors\":\"T M Seixas and M A Salgueiro da Silva\",\"doi\":\"10.1088/1361-6552/ad4c46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes an exact radiometric model for experimental demonstrators of the detection of exoplanets by the transit method. This model generalises the calculation of the depth of occultation from the standard transit method to the case of a finite size demonstrator apparatus. Results show that, for demonstrator apparatuses of moderately small sizes, a significant accuracy improvement in the determination of the size of a planet model can be achieved using the proposed method in comparison to using the formula from the standard transit method. The radiance distribution of the star model is found to be of crucial importance, as deviations from a Lambertian radiance distribution can lead to significantly different results.\",\"PeriodicalId\":39773,\"journal\":{\"name\":\"Physics Education\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6552/ad4c46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6552/ad4c46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
A radiometric model for demonstration of exoplanets detection by the transit method
This work describes an exact radiometric model for experimental demonstrators of the detection of exoplanets by the transit method. This model generalises the calculation of the depth of occultation from the standard transit method to the case of a finite size demonstrator apparatus. Results show that, for demonstrator apparatuses of moderately small sizes, a significant accuracy improvement in the determination of the size of a planet model can be achieved using the proposed method in comparison to using the formula from the standard transit method. The radiance distribution of the star model is found to be of crucial importance, as deviations from a Lambertian radiance distribution can lead to significantly different results.
期刊介绍:
Physics Education seeks to serve the physics teaching community and we welcome contributions from teachers. We seek to support the teaching of physics to students aged 11 up to introductory undergraduate level. We aim to provide professional development and support for teachers of physics around the world by providing: a forum for practising teachers to make an active contribution to the physics teaching community; knowledge updates in physics, educational research and relevant wider curriculum developments; and strategies for teaching and classroom management that will engage and motivate students.