基于非对称石墨烯纳米带阵列的中红外区域可调谐法诺共振

IF 1.5 4区 物理与天体物理 Q3 OPTICS The European Physical Journal D Pub Date : 2024-06-05 DOI:10.1140/epjd/s10053-024-00857-z
Sehnaz Kanli
{"title":"基于非对称石墨烯纳米带阵列的中红外区域可调谐法诺共振","authors":"Sehnaz Kanli","doi":"10.1140/epjd/s10053-024-00857-z","DOIUrl":null,"url":null,"abstract":"<p>An asymmetric graphene nanoribbon structure is presented to reach plasmonic Fano resonance in mid-infrared region when illuminated by a TM polarized light. Each mode of the Fano resonance is connected to the resonance mode occurred around each of nanoribbons with different width in the structure. Numerical studies show that the position and amplitude of the double resonances can be actively adapted via geometrical modification of the graphene structure or altering the doping level. Moreover, simulation results show highly remarkable enhancement in normalized electric field intensity for the asymmetric graphene structure compared to its symmetric counterparts. This feature is advantageous for construction of high sensitivity instruments such as sensors or filters.</p>","PeriodicalId":789,"journal":{"name":"The European Physical Journal D","volume":"78 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Fano resonance in mid-infrared region based on asymmetric graphene nanoribbon arrays\",\"authors\":\"Sehnaz Kanli\",\"doi\":\"10.1140/epjd/s10053-024-00857-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An asymmetric graphene nanoribbon structure is presented to reach plasmonic Fano resonance in mid-infrared region when illuminated by a TM polarized light. Each mode of the Fano resonance is connected to the resonance mode occurred around each of nanoribbons with different width in the structure. Numerical studies show that the position and amplitude of the double resonances can be actively adapted via geometrical modification of the graphene structure or altering the doping level. Moreover, simulation results show highly remarkable enhancement in normalized electric field intensity for the asymmetric graphene structure compared to its symmetric counterparts. This feature is advantageous for construction of high sensitivity instruments such as sensors or filters.</p>\",\"PeriodicalId\":789,\"journal\":{\"name\":\"The European Physical Journal D\",\"volume\":\"78 6\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal D\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjd/s10053-024-00857-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal D","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjd/s10053-024-00857-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 介绍了一种非对称石墨烯纳米带结构,该结构在 TM 偏振光照射下可在中红外区域产生等离子法诺共振。法诺共振的每个模式都与结构中不同宽度的纳米带周围发生的共振模式有关。数值研究表明,可以通过改变石墨烯结构的几何形状或掺杂水平来主动调整双共振的位置和振幅。此外,模拟结果表明,与对称石墨烯结构相比,非对称石墨烯结构的归一化电场强度显著增强。这一特性有利于制造传感器或滤波器等高灵敏度仪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tunable Fano resonance in mid-infrared region based on asymmetric graphene nanoribbon arrays

An asymmetric graphene nanoribbon structure is presented to reach plasmonic Fano resonance in mid-infrared region when illuminated by a TM polarized light. Each mode of the Fano resonance is connected to the resonance mode occurred around each of nanoribbons with different width in the structure. Numerical studies show that the position and amplitude of the double resonances can be actively adapted via geometrical modification of the graphene structure or altering the doping level. Moreover, simulation results show highly remarkable enhancement in normalized electric field intensity for the asymmetric graphene structure compared to its symmetric counterparts. This feature is advantageous for construction of high sensitivity instruments such as sensors or filters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal D
The European Physical Journal D 物理-物理:原子、分子和化学物理
CiteScore
3.10
自引率
11.10%
发文量
213
审稿时长
3 months
期刊介绍: The European Physical Journal D (EPJ D) presents new and original research results in: Atomic Physics; Molecular Physics and Chemical Physics; Atomic and Molecular Collisions; Clusters and Nanostructures; Plasma Physics; Laser Cooling and Quantum Gas; Nonlinear Dynamics; Optical Physics; Quantum Optics and Quantum Information; Ultraintense and Ultrashort Laser Fields. The range of topics covered in these areas is extensive, from Molecular Interaction and Reactivity to Spectroscopy and Thermodynamics of Clusters, from Atomic Optics to Bose-Einstein Condensation to Femtochemistry.
期刊最新文献
Characteristics, implementation, and applications of special perfect entanglers Investigation of structural, IR spectral, thermodynamics and excitation property alterations in (AlN)12 cluster under external electric fields Enhanced thermoelectric properties of zinc porphyrin dimers-based molecular devices Conservation of the number of nodes in the wavefunctions of one-electron diatomic quasimolecules GRASIAN: shaping and characterization of the cold hydrogen and deuterium beams for the forthcoming first demonstration of gravitational quantum states of atoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1