计算承诺器与承诺器,研究过渡态集合

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-06-05 DOI:10.1038/s43588-024-00645-0
Peilin Kang, Enrico Trizio, Michele Parrinello
{"title":"计算承诺器与承诺器,研究过渡态集合","authors":"Peilin Kang, Enrico Trizio, Michele Parrinello","doi":"10.1038/s43588-024-00645-0","DOIUrl":null,"url":null,"abstract":"The study of the kinetic bottlenecks that hinder the rare transitions between long-lived metastable states is a major challenge in atomistic simulations. Here we propose a method to explore the transition state ensemble, which is the distribution of configurations that the system passes through as it translocates from one metastable basin to another. We base our method on the committor function and the variational principle that it obeys. We find its minimum through a self-consistent procedure that starts from information limited to the initial and final states. Right from the start, our procedure allows the sampling of very many transition state configurations. With the help of the variational principle, we perform a detailed analysis of the transition state ensemble, ranking quantitatively the degrees of freedom mostly involved in the transition and enabling a systematic approach for the interpretation of simulation results and the construction of efficient physics-informed collective variables. A self-consistent iterative procedure is proposed to compute the committor function for rare events, via a variational principle, and extensively sample the transition state ensemble, allowing for the identification of the relevant variables in the process.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the committor with the committor to study the transition state ensemble\",\"authors\":\"Peilin Kang, Enrico Trizio, Michele Parrinello\",\"doi\":\"10.1038/s43588-024-00645-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the kinetic bottlenecks that hinder the rare transitions between long-lived metastable states is a major challenge in atomistic simulations. Here we propose a method to explore the transition state ensemble, which is the distribution of configurations that the system passes through as it translocates from one metastable basin to another. We base our method on the committor function and the variational principle that it obeys. We find its minimum through a self-consistent procedure that starts from information limited to the initial and final states. Right from the start, our procedure allows the sampling of very many transition state configurations. With the help of the variational principle, we perform a detailed analysis of the transition state ensemble, ranking quantitatively the degrees of freedom mostly involved in the transition and enabling a systematic approach for the interpretation of simulation results and the construction of efficient physics-informed collective variables. A self-consistent iterative procedure is proposed to compute the committor function for rare events, via a variational principle, and extensively sample the transition state ensemble, allowing for the identification of the relevant variables in the process.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00645-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00645-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

研究阻碍长寿命态之间罕见转变的动力学瓶颈是原子模拟的一大挑战。在这里,我们提出了一种探索过渡态集合的方法,过渡态集合是系统从一个态转移到另一个态时所经过的构型分布。我们的方法基于委托函数及其遵循的变分原理。我们从仅限于初始和最终状态的信息出发,通过自洽程序找到其最小值。从一开始,我们的程序就允许对非常多的过渡状态配置进行采样。在变分原理的帮助下,我们对过渡态集合进行了详细分析,定量排序了过渡过程中主要涉及的自由度,并为解释模拟结果和构建高效的物理集合变量提供了系统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing the committor with the committor to study the transition state ensemble
The study of the kinetic bottlenecks that hinder the rare transitions between long-lived metastable states is a major challenge in atomistic simulations. Here we propose a method to explore the transition state ensemble, which is the distribution of configurations that the system passes through as it translocates from one metastable basin to another. We base our method on the committor function and the variational principle that it obeys. We find its minimum through a self-consistent procedure that starts from information limited to the initial and final states. Right from the start, our procedure allows the sampling of very many transition state configurations. With the help of the variational principle, we perform a detailed analysis of the transition state ensemble, ranking quantitatively the degrees of freedom mostly involved in the transition and enabling a systematic approach for the interpretation of simulation results and the construction of efficient physics-informed collective variables. A self-consistent iterative procedure is proposed to compute the committor function for rare events, via a variational principle, and extensively sample the transition state ensemble, allowing for the identification of the relevant variables in the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Real-time non-line-of-sight computational imaging using spectrum filtering and motion compensation. Deep generative design of RNA aptamers using structural predictions. Extracting reliable quantum outputs for noisy devices. Provable bounds for noise-free expectation values computed from noisy samples. E-waste challenges of generative artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1