利用自适应谱法学习无界域时空微分方程

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-03 DOI:10.1007/s12190-024-02131-2
Mingtao Xia, Xiangting Li, Qijing Shen, Tom Chou
{"title":"利用自适应谱法学习无界域时空微分方程","authors":"Mingtao Xia, Xiangting Li, Qijing Shen, Tom Chou","doi":"10.1007/s12190-024-02131-2","DOIUrl":null,"url":null,"abstract":"<p>Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that <i>spectrally expands</i> the spatial dependence of solutions to learn the spatiotemporal DEs they obey. Our spectral spatiotemporal DE learning method has the advantage of not explicitly relying on spatial discretization (e.g., meshes or grids), thus allowing reconstruction of DEs that may be defined on <i>unbounded</i> spatial domains and that may contain long-ranged, nonlocal spatial interactions. By combining spectral methods with the neural ODE framework, our proposed spectral DE method addresses the inverse-type problem of reconstructing spatiotemporal equations in <i>unbounded domains</i>. Even for bounded domain problems, our spectral approach is as accurate as some of the latest machine learning approaches for learning or numerically solving partial differential equations (PDEs). By developing a spectral framework for reconstructing both PDEs and partial integro-differential equations (PIDEs), we extend dynamical reconstruction approaches to a wider range of problems, including those in unbounded domains.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods\",\"authors\":\"Mingtao Xia, Xiangting Li, Qijing Shen, Tom Chou\",\"doi\":\"10.1007/s12190-024-02131-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that <i>spectrally expands</i> the spatial dependence of solutions to learn the spatiotemporal DEs they obey. Our spectral spatiotemporal DE learning method has the advantage of not explicitly relying on spatial discretization (e.g., meshes or grids), thus allowing reconstruction of DEs that may be defined on <i>unbounded</i> spatial domains and that may contain long-ranged, nonlocal spatial interactions. By combining spectral methods with the neural ODE framework, our proposed spectral DE method addresses the inverse-type problem of reconstructing spatiotemporal equations in <i>unbounded domains</i>. Even for bounded domain problems, our spectral approach is as accurate as some of the latest machine learning approaches for learning or numerically solving partial differential equations (PDEs). By developing a spectral framework for reconstructing both PDEs and partial integro-differential equations (PIDEs), we extend dynamical reconstruction approaches to a wider range of problems, including those in unbounded domains.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02131-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02131-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

快速发展的机器学习方法激发了人们对从观测数据中计算重建微分方程(DE)的研究兴趣,从而提供了对潜在力学模型的洞察力。在本文中,我们提出了一种基于神经网络微分方程的新方法,该方法能从光谱上扩展解的空间依赖性,从而学习它们所服从的时空微分方程。我们的谱时空 DE 学习方法的优点是不明确依赖空间离散化(如网格),因此可以重建可能定义在无边界空间域上的 DE,以及可能包含远距离、非局部空间相互作用的 DE。通过将光谱方法与神经 ODE 框架相结合,我们提出的光谱 DE 方法解决了在无界域中重建时空方程的逆类型问题。即使对于有界域问题,我们的频谱方法也能像一些最新的机器学习方法一样精确地学习或数值求解偏微分方程(PDEs)。通过开发重构偏微分方程和偏积分微分方程(PIDE)的谱框架,我们将动态重构方法扩展到更广泛的问题,包括无界域中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods

Rapidly developing machine learning methods have stimulated research interest in computationally reconstructing differential equations (DEs) from observational data, providing insight into the underlying mechanistic models. In this paper, we propose a new neural-ODE-based method that spectrally expands the spatial dependence of solutions to learn the spatiotemporal DEs they obey. Our spectral spatiotemporal DE learning method has the advantage of not explicitly relying on spatial discretization (e.g., meshes or grids), thus allowing reconstruction of DEs that may be defined on unbounded spatial domains and that may contain long-ranged, nonlocal spatial interactions. By combining spectral methods with the neural ODE framework, our proposed spectral DE method addresses the inverse-type problem of reconstructing spatiotemporal equations in unbounded domains. Even for bounded domain problems, our spectral approach is as accurate as some of the latest machine learning approaches for learning or numerically solving partial differential equations (PDEs). By developing a spectral framework for reconstructing both PDEs and partial integro-differential equations (PIDEs), we extend dynamical reconstruction approaches to a wider range of problems, including those in unbounded domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1