{"title":"利用极端混合物设计响应面方法对用于小型风力涡轮机叶片的玻璃/碳混合复合材料进行多目标优化","authors":"Suhaib Mohammed and Raghuram L Naik","doi":"10.1088/2631-6331/ad45a7","DOIUrl":null,"url":null,"abstract":"Small wind turbines (SWTs) are a prominent renewable energy technology for decentralized power generation. Blade material and its profile are vital parameters for the aerodynamic performance of SWTs. Traditionally E-glass fiber-reinforced composites (FRCs) are the widely accepted material for developing SWT blades. However, its application is limited by moderate tensile and fatigue properties. Alternatively, other FRC materials such as carbon, basalt and natural fiber composites are proposed as future materials for SWT blades. However, individual materials are observed to satisfy the requirements partially. Therefore, the hybridization of these materials, particularly Glass/Carbon composites is foreseen as a prospective solution for developing cost-competitive and high-strength SWT blades. There are various studies performed to obtain optimized glass/carbon hybrid composites. However, overall material properties required for SWT blades such as low cost, lightweight, moderate flexural strength and higher tensile and fatigue strengths have not been considered simultaneously during the optimization process. This work presents multi-objective optimization of Glass/Carbon hybrid composites using extreme mixture design response surface methodology (RSM) for SWT applications. The weight percentages of glass and carbon fibers are optimized to achieve desired material properties for SWT blades. The experiments are planned using extreme mixture design RSM and the regression models for desired material properties are developed with a 95% confidence level. RSM-based desirability function is employed to perform multi-objective optimization. Maximum composite desirability of 93.5% is achieved with optimal proportions of 37.9% and 27.1% for glass and carbon fibers respectively. An adequate tensile, flexural and fatigue strengths of 486.02, 435.41 and 316.27 MPa respectively are obtained for optimized glass/carbon hybrid composite at an optimum cost of 2228.76 Rs Kg−1 and density of 3.39 g cm−3. The regression models and optimization results are validated through a confirmation experiment with an error of less than 6.1%.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":"43 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of glass/carbon hybrid composites for small wind turbine blades using extreme mixture design response surface methodology\",\"authors\":\"Suhaib Mohammed and Raghuram L Naik\",\"doi\":\"10.1088/2631-6331/ad45a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Small wind turbines (SWTs) are a prominent renewable energy technology for decentralized power generation. Blade material and its profile are vital parameters for the aerodynamic performance of SWTs. Traditionally E-glass fiber-reinforced composites (FRCs) are the widely accepted material for developing SWT blades. However, its application is limited by moderate tensile and fatigue properties. Alternatively, other FRC materials such as carbon, basalt and natural fiber composites are proposed as future materials for SWT blades. However, individual materials are observed to satisfy the requirements partially. Therefore, the hybridization of these materials, particularly Glass/Carbon composites is foreseen as a prospective solution for developing cost-competitive and high-strength SWT blades. There are various studies performed to obtain optimized glass/carbon hybrid composites. However, overall material properties required for SWT blades such as low cost, lightweight, moderate flexural strength and higher tensile and fatigue strengths have not been considered simultaneously during the optimization process. This work presents multi-objective optimization of Glass/Carbon hybrid composites using extreme mixture design response surface methodology (RSM) for SWT applications. The weight percentages of glass and carbon fibers are optimized to achieve desired material properties for SWT blades. The experiments are planned using extreme mixture design RSM and the regression models for desired material properties are developed with a 95% confidence level. RSM-based desirability function is employed to perform multi-objective optimization. Maximum composite desirability of 93.5% is achieved with optimal proportions of 37.9% and 27.1% for glass and carbon fibers respectively. An adequate tensile, flexural and fatigue strengths of 486.02, 435.41 and 316.27 MPa respectively are obtained for optimized glass/carbon hybrid composite at an optimum cost of 2228.76 Rs Kg−1 and density of 3.39 g cm−3. The regression models and optimization results are validated through a confirmation experiment with an error of less than 6.1%.\",\"PeriodicalId\":12652,\"journal\":{\"name\":\"Functional Composites and Structures\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Composites and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-6331/ad45a7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composites and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/ad45a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Multi-objective optimization of glass/carbon hybrid composites for small wind turbine blades using extreme mixture design response surface methodology
Small wind turbines (SWTs) are a prominent renewable energy technology for decentralized power generation. Blade material and its profile are vital parameters for the aerodynamic performance of SWTs. Traditionally E-glass fiber-reinforced composites (FRCs) are the widely accepted material for developing SWT blades. However, its application is limited by moderate tensile and fatigue properties. Alternatively, other FRC materials such as carbon, basalt and natural fiber composites are proposed as future materials for SWT blades. However, individual materials are observed to satisfy the requirements partially. Therefore, the hybridization of these materials, particularly Glass/Carbon composites is foreseen as a prospective solution for developing cost-competitive and high-strength SWT blades. There are various studies performed to obtain optimized glass/carbon hybrid composites. However, overall material properties required for SWT blades such as low cost, lightweight, moderate flexural strength and higher tensile and fatigue strengths have not been considered simultaneously during the optimization process. This work presents multi-objective optimization of Glass/Carbon hybrid composites using extreme mixture design response surface methodology (RSM) for SWT applications. The weight percentages of glass and carbon fibers are optimized to achieve desired material properties for SWT blades. The experiments are planned using extreme mixture design RSM and the regression models for desired material properties are developed with a 95% confidence level. RSM-based desirability function is employed to perform multi-objective optimization. Maximum composite desirability of 93.5% is achieved with optimal proportions of 37.9% and 27.1% for glass and carbon fibers respectively. An adequate tensile, flexural and fatigue strengths of 486.02, 435.41 and 316.27 MPa respectively are obtained for optimized glass/carbon hybrid composite at an optimum cost of 2228.76 Rs Kg−1 and density of 3.39 g cm−3. The regression models and optimization results are validated through a confirmation experiment with an error of less than 6.1%.