为稳定的锂金属电池激光构建具有晶体取向选择性的三维铜集流器

IF 13 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Energy & Environmental Materials Pub Date : 2024-06-02 DOI:10.1002/eem2.12768
Hui Li, Gang Wang, Jin Hu, Jun Li, Jiaxu Huang, Shaolin Xu
{"title":"为稳定的锂金属电池激光构建具有晶体取向选择性的三维铜集流器","authors":"Hui Li, Gang Wang, Jin Hu, Jun Li, Jiaxu Huang, Shaolin Xu","doi":"10.1002/eem2.12768","DOIUrl":null,"url":null,"abstract":"The practical application of lithium (Li) metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites. To address this challenge, this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper (Cu) current collectors. Specifically, this approach enhances the prevalence of Cu (100) facets within the grooves, effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition. Unlike approaches that modify the entire surface of collectors, our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics. The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42% over 350 cycles at 1 mA cm<sup>−2</sup>. The symmetric cell can cycle stably for 1600 h at 0.5 mA cm<sup>−2</sup>. Furthermore, when integrated with LiFePO<sub>4</sub> cathodes, the full-cell configuration demonstrates outstanding capacity retention of 92.39% after 400 cycles at a 1C discharge rate. This study introduces a novel technique for fabricating selective lithiophilic three-dimensional (3D) Cu current collectors, thereby enhancing the performance of Li metal batteries. The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser-Constructing 3D Copper Current Collector with Crystalline Orientation Selectivity for Stable Lithium Metal Batteries\",\"authors\":\"Hui Li, Gang Wang, Jin Hu, Jun Li, Jiaxu Huang, Shaolin Xu\",\"doi\":\"10.1002/eem2.12768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The practical application of lithium (Li) metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites. To address this challenge, this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper (Cu) current collectors. Specifically, this approach enhances the prevalence of Cu (100) facets within the grooves, effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition. Unlike approaches that modify the entire surface of collectors, our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics. The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42% over 350 cycles at 1 mA cm<sup>−2</sup>. The symmetric cell can cycle stably for 1600 h at 0.5 mA cm<sup>−2</sup>. Furthermore, when integrated with LiFePO<sub>4</sub> cathodes, the full-cell configuration demonstrates outstanding capacity retention of 92.39% after 400 cycles at a 1C discharge rate. This study introduces a novel technique for fabricating selective lithiophilic three-dimensional (3D) Cu current collectors, thereby enhancing the performance of Li metal batteries. The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.\",\"PeriodicalId\":11554,\"journal\":{\"name\":\"Energy & Environmental Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/eem2.12768\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/eem2.12768","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂(Li)金属阳极在高容量电池中的实际应用受到有害锂枝晶形成的阻碍。为应对这一挑战,本研究提出了一种结合激光烧蚀和热处理的新方法,以精确诱导铜(Cu)集流体上激光结构凹槽内的受控晶粒生长。具体来说,这种方法提高了凹槽内铜(100)刻面的普遍性,有效降低了锂成核的过电位,促进了锂的优先沉积。与改变整个集电体表面的方法不同,我们的工作重点是有选择性地增强沟槽内的亲锂性,以减少锂枝晶的形成,并显示出卓越的性能指标。使用这些集流体的半电池在 1 mA cm-2 的条件下循环 350 次后,库仑效率仍能保持在 97.42% 的出色水平。对称电池可在 0.5 mA cm-2 下稳定循环 1600 小时。此外,当与磷酸铁锂阴极集成时,全电池配置在 1C 放电率下经过 400 次循环后显示出 92.39% 的出色容量保持率。本研究介绍了一种用于制造选择性亲锂三维(3D)铜集流体的新技术,从而提高了锂金属电池的性能。通过在复杂结构中进行精确的嗜锂改性,这种方法所获得的见解有望提高所有激光加工三维铜集流器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser-Constructing 3D Copper Current Collector with Crystalline Orientation Selectivity for Stable Lithium Metal Batteries
The practical application of lithium (Li) metal anodes in high-capacity batteries is impeded by the formation of hazardous Li dendrites. To address this challenge, this research presents a novel methodology that combines laser ablation and heat treatment to precisely induce controlled grain growth within laser-structured grooves on copper (Cu) current collectors. Specifically, this approach enhances the prevalence of Cu (100) facets within the grooves, effectively lowering the overpotential for Li nucleation and promoting preferential Li deposition. Unlike approaches that modify the entire surface of collectors, our work focuses on selectively enhancing lithiophilicity within the grooves to mitigate the formation of Li dendrites and exhibit exceptional performance metrics. The half-cell with these collectors maintains a remarkable Coulombic efficiency of 97.42% over 350 cycles at 1 mA cm−2. The symmetric cell can cycle stably for 1600 h at 0.5 mA cm−2. Furthermore, when integrated with LiFePO4 cathodes, the full-cell configuration demonstrates outstanding capacity retention of 92.39% after 400 cycles at a 1C discharge rate. This study introduces a novel technique for fabricating selective lithiophilic three-dimensional (3D) Cu current collectors, thereby enhancing the performance of Li metal batteries. The insights gained from this approach hold promise for enhancing the performance of all laser-processed 3D Cu current collectors by enabling precise lithiophilic modifications within complex structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Materials
Energy & Environmental Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
17.60
自引率
6.00%
发文量
66
期刊介绍: Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.
期刊最新文献
Unveiling the Role of Electrocatalysts Activation for Iron-Doped Ni Oxyhydroxide in Enhancing the Catalytic Performance of Oxygen Evolution Reaction Unraveling the Morphological and Energetic Properties of 2PACz Self-Assembled Monolayers Fabricated With Upscaling Deposition Methods Covalently Anchoring and In Situ Electrochemical Activation of Conductive Selenophene-Organic Matrix-Driven High-Efficiency Potassium Organic Batteries A Practical Zinc Metal Anode Coating Strategy Utilizing Bulk h-BN and Improved Hydrogen Redox Kinetics Designing Spin-Crossover Systems to Enhance Thermopower and Thermoelectric Figure-of-Merit in Paramagnetic Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1