在人与机器人的物理合作过程中同时学习意图和偏好

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Autonomous Robots Pub Date : 2024-06-04 DOI:10.1007/s10514-024-10167-3
Linda van der Spaa, Jens Kober, Michael Gienger
{"title":"在人与机器人的物理合作过程中同时学习意图和偏好","authors":"Linda van der Spaa,&nbsp;Jens Kober,&nbsp;Michael Gienger","doi":"10.1007/s10514-024-10167-3","DOIUrl":null,"url":null,"abstract":"<div><p>The advent of collaborative robots allows humans and robots to cooperate in a direct and physical way. While this leads to amazing new opportunities to create novel robotics applications, it is challenging to make the collaboration intuitive for the human. From a system’s perspective, understanding the human intentions seems to be one promising way to get there. However, human behavior exhibits large variations between individuals, such as for instance preferences or physical abilities. This paper presents a novel concept for simultaneously learning a model of the human intentions and preferences incrementally during collaboration with a robot. Starting out with a nominal model, the system acquires collaborative skills step-by-step within only very few trials. The concept is based on a combination of model-based reinforcement learning and inverse reinforcement learning, adapted to fit collaborations in which human and robot think and act independently. We test the method and compare it to two baselines: one that imitates the human and one that uses plain maximum entropy inverse reinforcement learning, both in simulation and in a user study with a Franka Emika Panda robot arm.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 4-5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10167-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Simultaneously learning intentions and preferences during physical human-robot cooperation\",\"authors\":\"Linda van der Spaa,&nbsp;Jens Kober,&nbsp;Michael Gienger\",\"doi\":\"10.1007/s10514-024-10167-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The advent of collaborative robots allows humans and robots to cooperate in a direct and physical way. While this leads to amazing new opportunities to create novel robotics applications, it is challenging to make the collaboration intuitive for the human. From a system’s perspective, understanding the human intentions seems to be one promising way to get there. However, human behavior exhibits large variations between individuals, such as for instance preferences or physical abilities. This paper presents a novel concept for simultaneously learning a model of the human intentions and preferences incrementally during collaboration with a robot. Starting out with a nominal model, the system acquires collaborative skills step-by-step within only very few trials. The concept is based on a combination of model-based reinforcement learning and inverse reinforcement learning, adapted to fit collaborations in which human and robot think and act independently. We test the method and compare it to two baselines: one that imitates the human and one that uses plain maximum entropy inverse reinforcement learning, both in simulation and in a user study with a Franka Emika Panda robot arm.</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"48 4-5\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-024-10167-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-024-10167-3\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-024-10167-3","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

协作机器人的出现使人类和机器人能够以直接和物理的方式进行合作。虽然这为创造新颖的机器人应用带来了令人惊叹的新机遇,但如何让人类直观地感受到这种合作却是一项挑战。从系统的角度来看,理解人类的意图似乎是一种很有前景的方法。然而,人类行为在个体之间存在很大差异,例如喜好或体能。本文提出了一个新颖的概念,即在与机器人合作的过程中,同时逐步学习人类意图和偏好的模型。从一个名义模型开始,系统只需进行几次试验,就能逐步掌握协作技能。这一概念基于基于模型的强化学习和逆向强化学习的结合,适用于人类和机器人独立思考和行动的协作。我们对该方法进行了测试,并将其与两种基线方法进行了比较:一种是模仿人类的方法,另一种是使用普通最大熵反强化学习的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneously learning intentions and preferences during physical human-robot cooperation

The advent of collaborative robots allows humans and robots to cooperate in a direct and physical way. While this leads to amazing new opportunities to create novel robotics applications, it is challenging to make the collaboration intuitive for the human. From a system’s perspective, understanding the human intentions seems to be one promising way to get there. However, human behavior exhibits large variations between individuals, such as for instance preferences or physical abilities. This paper presents a novel concept for simultaneously learning a model of the human intentions and preferences incrementally during collaboration with a robot. Starting out with a nominal model, the system acquires collaborative skills step-by-step within only very few trials. The concept is based on a combination of model-based reinforcement learning and inverse reinforcement learning, adapted to fit collaborations in which human and robot think and act independently. We test the method and compare it to two baselines: one that imitates the human and one that uses plain maximum entropy inverse reinforcement learning, both in simulation and in a user study with a Franka Emika Panda robot arm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
期刊最新文献
View: visual imitation learning with waypoints Safe and stable teleoperation of quadrotor UAVs under haptic shared autonomy Synthesizing compact behavior trees for probabilistic robotics domains Integrative biomechanics of a human–robot carrying task: implications for future collaborative work Mori-zwanzig approach for belief abstraction with application to belief space planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1