肝细胞癌中瑞戈非尼和放疗的累积抗肿瘤效果。

IF 3 2区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Carcinogenesis Pub Date : 2024-09-01 Epub Date: 2024-06-05 DOI:10.1002/mc.23769
Shuwen Kuang, Jiajun Zhang, Ning Huang, Jing Zhang, Bo Chen, Liming Wang, Mei Liu
{"title":"肝细胞癌中瑞戈非尼和放疗的累积抗肿瘤效果。","authors":"Shuwen Kuang, Jiajun Zhang, Ning Huang, Jing Zhang, Bo Chen, Liming Wang, Mei Liu","doi":"10.1002/mc.23769","DOIUrl":null,"url":null,"abstract":"<p><p>Regorafenib is a second-line standard treatment for hepatocellular carcinoma (HCC). However, the efficacy of regorafenib is often limited due to drug resistance, individual differences among patients, and irrational drug use. Radiotherapy (RT) is an important method of localized HCC treatment, and combining RT with other therapies may exert a synergetic antitumor effect. Platelet-derived growth factor receptor-like (PDGFRL) is a tumor suppressor in various solid tumors. However, the function of PDGFRL in HCC is still unknown. In this study, we explored whether regorafenib and RT exert a synergetic effect on the treatment of HCC. The antitumor effect and mechanisms of the combination of regorafenib and RT were verified in a xenograft mouse model in vivo and in HCC cells in vitro. The combination treatment significantly inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. PDGFRL, a potential target of regorafenib, was increased after cumulative treatment in HCC cells, and PDGFRL suppressed HCC cell proliferation and promoted apoptosis by inhibiting STAT3 pathway activation. Furthermore, the cumulative antitumor effect was dependent on the upregulated expression of PDGFRL and inhibition of STAT3 signaling pathway activation in HCC cells. This study increased the understanding of the molecular mechanism underlying the effect of regorafenib plus RT on HCC and provided a theoretical basis for the clinical practice of HCC.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cumulative antitumor effects of regorafenib and radiotherapy in hepatocellular carcinoma.\",\"authors\":\"Shuwen Kuang, Jiajun Zhang, Ning Huang, Jing Zhang, Bo Chen, Liming Wang, Mei Liu\",\"doi\":\"10.1002/mc.23769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Regorafenib is a second-line standard treatment for hepatocellular carcinoma (HCC). However, the efficacy of regorafenib is often limited due to drug resistance, individual differences among patients, and irrational drug use. Radiotherapy (RT) is an important method of localized HCC treatment, and combining RT with other therapies may exert a synergetic antitumor effect. Platelet-derived growth factor receptor-like (PDGFRL) is a tumor suppressor in various solid tumors. However, the function of PDGFRL in HCC is still unknown. In this study, we explored whether regorafenib and RT exert a synergetic effect on the treatment of HCC. The antitumor effect and mechanisms of the combination of regorafenib and RT were verified in a xenograft mouse model in vivo and in HCC cells in vitro. The combination treatment significantly inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. PDGFRL, a potential target of regorafenib, was increased after cumulative treatment in HCC cells, and PDGFRL suppressed HCC cell proliferation and promoted apoptosis by inhibiting STAT3 pathway activation. Furthermore, the cumulative antitumor effect was dependent on the upregulated expression of PDGFRL and inhibition of STAT3 signaling pathway activation in HCC cells. This study increased the understanding of the molecular mechanism underlying the effect of regorafenib plus RT on HCC and provided a theoretical basis for the clinical practice of HCC.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23769\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23769","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

瑞戈非尼是治疗肝细胞癌(HCC)的二线标准疗法。然而,由于耐药性、患者个体差异和不合理用药等原因,瑞戈非尼的疗效往往受到限制。放射治疗(RT)是局部 HCC 治疗的重要方法,RT 与其他疗法联合可发挥协同抗肿瘤作用。血小板衍生生长因子受体样(PDGFRL)是多种实体瘤的肿瘤抑制因子。然而,PDGFRL 在 HCC 中的功能尚不清楚。本研究探讨了瑞戈非尼和 RT 在治疗 HCC 中是否能发挥协同作用。我们在体内异种移植小鼠模型和体外HCC细胞中验证了瑞戈非尼和RT联合治疗的抗肿瘤效果和机制。在体外和体内,联合治疗都能明显抑制细胞增殖并促进细胞凋亡。瑞戈非尼的潜在靶点--PDGFRL在HCC细胞中累积治疗后增加,PDGFRL通过抑制STAT3通路活化抑制HCC细胞增殖并促进细胞凋亡。此外,累积抗肿瘤效应依赖于PDGFRL在HCC细胞中的表达上调和STAT3信号通路活化的抑制。该研究加深了人们对瑞戈非尼加RT治疗HCC的分子机制的认识,为HCC的临床实践提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The cumulative antitumor effects of regorafenib and radiotherapy in hepatocellular carcinoma.

Regorafenib is a second-line standard treatment for hepatocellular carcinoma (HCC). However, the efficacy of regorafenib is often limited due to drug resistance, individual differences among patients, and irrational drug use. Radiotherapy (RT) is an important method of localized HCC treatment, and combining RT with other therapies may exert a synergetic antitumor effect. Platelet-derived growth factor receptor-like (PDGFRL) is a tumor suppressor in various solid tumors. However, the function of PDGFRL in HCC is still unknown. In this study, we explored whether regorafenib and RT exert a synergetic effect on the treatment of HCC. The antitumor effect and mechanisms of the combination of regorafenib and RT were verified in a xenograft mouse model in vivo and in HCC cells in vitro. The combination treatment significantly inhibited cell proliferation and promoted apoptosis both in vitro and in vivo. PDGFRL, a potential target of regorafenib, was increased after cumulative treatment in HCC cells, and PDGFRL suppressed HCC cell proliferation and promoted apoptosis by inhibiting STAT3 pathway activation. Furthermore, the cumulative antitumor effect was dependent on the upregulated expression of PDGFRL and inhibition of STAT3 signaling pathway activation in HCC cells. This study increased the understanding of the molecular mechanism underlying the effect of regorafenib plus RT on HCC and provided a theoretical basis for the clinical practice of HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Carcinogenesis
Molecular Carcinogenesis 医学-生化与分子生物学
CiteScore
7.30
自引率
2.20%
发文量
112
审稿时长
2 months
期刊介绍: Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.
期刊最新文献
CD137 Protein Expression Pattern Determines the Functional Role of Galectin-9 in Colorectal Cancer. NEK2 Promotes ESCC Malignant Progression by Inhibiting Cellular Senescence via the FOXM1/c-Myc/p27 Signaling Pathway. ZNF480 Accelerates Chemotherapy Resistance in Breast Cancer by Competing With TRIM28 and Stabilizing LSD1 to Upregulate the AKT-GSK3β-Snail Pathway. p110CUX1 promotes acute myeloid leukemia progression via regulating pyridoxal phosphatase expression and activating PI3K/AKT/mTOR signaling pathway. Histone lactylation facilitates hepatocellular carcinoma progression by upregulating endothelial cell-specific molecule 1 expression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1