Susana Castro-Pando, Rian M Howell, Le Li, Marilina Mascaro, Erika Y Faraoni, Olivereen Le Roux, David Romanin, Virginia Tahan, Erick Riquelme, Yu Zhang, Jay K Kolls, James P Allison, Guillermina Lozano, Seyed J Moghaddam, Florencia McAllister
{"title":"胰腺上皮细胞IL-17/IL-17RA信号驱动B7-H4的表达,从而促进肿瘤发生。","authors":"Susana Castro-Pando, Rian M Howell, Le Li, Marilina Mascaro, Erika Y Faraoni, Olivereen Le Roux, David Romanin, Virginia Tahan, Erick Riquelme, Yu Zhang, Jay K Kolls, James P Allison, Guillermina Lozano, Seyed J Moghaddam, Florencia McAllister","doi":"10.1158/2326-6066.CIR-23-0527","DOIUrl":null,"url":null,"abstract":"<p><p>IL17 is required for the initiation and progression of pancreatic cancer, particularly in the context of inflammation, as previously shown by genetic and pharmacological approaches. However, the cellular compartment and downstream molecular mediators of IL17-mediated pancreatic tumorigenesis have not been fully identified. This study examined the cellular compartment required by generating transgenic animals with IL17 receptor A (IL17RA), which was genetically deleted from either the pancreatic epithelial compartment or the hematopoietic compartment via generation of IL17RA-deficient (IL17-RA-/-) bone marrow chimeras, in the context of embryonically activated or inducible Kras. Deletion of IL17RA from the pancreatic epithelial compartment, but not from hematopoietic compartment, resulted in delayed initiation and progression of premalignant lesions and increased infiltration of CD8+ cytotoxic T cells to the tumor microenvironment. Absence of IL17RA in the pancreatic compartment affected transcriptional profiles of epithelial cells, modulating stemness, and immunological pathways. B7-H4, a known inhibitor of T-cell activation encoded by the gene Vtcn1, was the checkpoint molecule most upregulated via IL17 early during pancreatic tumorigenesis, and its genetic deletion delayed the development of pancreatic premalignant lesions and reduced immunosuppression. Thus, our data reveal that pancreatic epithelial IL17RA promotes pancreatic tumorigenesis by reprogramming the immune pancreatic landscape, which is partially orchestrated by regulation of B7-H4. Our findings provide the foundation of the mechanisms triggered by IL17 to mediate pancreatic tumorigenesis and reveal the avenues for early pancreatic cancer immune interception. See related Spotlight by Lee and Pasca di Magliano, p. 1130.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1170-1183"},"PeriodicalIF":8.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369627/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pancreatic Epithelial IL17/IL17RA Signaling Drives B7-H4 Expression to Promote Tumorigenesis.\",\"authors\":\"Susana Castro-Pando, Rian M Howell, Le Li, Marilina Mascaro, Erika Y Faraoni, Olivereen Le Roux, David Romanin, Virginia Tahan, Erick Riquelme, Yu Zhang, Jay K Kolls, James P Allison, Guillermina Lozano, Seyed J Moghaddam, Florencia McAllister\",\"doi\":\"10.1158/2326-6066.CIR-23-0527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>IL17 is required for the initiation and progression of pancreatic cancer, particularly in the context of inflammation, as previously shown by genetic and pharmacological approaches. However, the cellular compartment and downstream molecular mediators of IL17-mediated pancreatic tumorigenesis have not been fully identified. This study examined the cellular compartment required by generating transgenic animals with IL17 receptor A (IL17RA), which was genetically deleted from either the pancreatic epithelial compartment or the hematopoietic compartment via generation of IL17RA-deficient (IL17-RA-/-) bone marrow chimeras, in the context of embryonically activated or inducible Kras. Deletion of IL17RA from the pancreatic epithelial compartment, but not from hematopoietic compartment, resulted in delayed initiation and progression of premalignant lesions and increased infiltration of CD8+ cytotoxic T cells to the tumor microenvironment. Absence of IL17RA in the pancreatic compartment affected transcriptional profiles of epithelial cells, modulating stemness, and immunological pathways. B7-H4, a known inhibitor of T-cell activation encoded by the gene Vtcn1, was the checkpoint molecule most upregulated via IL17 early during pancreatic tumorigenesis, and its genetic deletion delayed the development of pancreatic premalignant lesions and reduced immunosuppression. Thus, our data reveal that pancreatic epithelial IL17RA promotes pancreatic tumorigenesis by reprogramming the immune pancreatic landscape, which is partially orchestrated by regulation of B7-H4. Our findings provide the foundation of the mechanisms triggered by IL17 to mediate pancreatic tumorigenesis and reveal the avenues for early pancreatic cancer immune interception. See related Spotlight by Lee and Pasca di Magliano, p. 1130.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"1170-1183\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369627/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-23-0527\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-23-0527","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Pancreatic Epithelial IL17/IL17RA Signaling Drives B7-H4 Expression to Promote Tumorigenesis.
IL17 is required for the initiation and progression of pancreatic cancer, particularly in the context of inflammation, as previously shown by genetic and pharmacological approaches. However, the cellular compartment and downstream molecular mediators of IL17-mediated pancreatic tumorigenesis have not been fully identified. This study examined the cellular compartment required by generating transgenic animals with IL17 receptor A (IL17RA), which was genetically deleted from either the pancreatic epithelial compartment or the hematopoietic compartment via generation of IL17RA-deficient (IL17-RA-/-) bone marrow chimeras, in the context of embryonically activated or inducible Kras. Deletion of IL17RA from the pancreatic epithelial compartment, but not from hematopoietic compartment, resulted in delayed initiation and progression of premalignant lesions and increased infiltration of CD8+ cytotoxic T cells to the tumor microenvironment. Absence of IL17RA in the pancreatic compartment affected transcriptional profiles of epithelial cells, modulating stemness, and immunological pathways. B7-H4, a known inhibitor of T-cell activation encoded by the gene Vtcn1, was the checkpoint molecule most upregulated via IL17 early during pancreatic tumorigenesis, and its genetic deletion delayed the development of pancreatic premalignant lesions and reduced immunosuppression. Thus, our data reveal that pancreatic epithelial IL17RA promotes pancreatic tumorigenesis by reprogramming the immune pancreatic landscape, which is partially orchestrated by regulation of B7-H4. Our findings provide the foundation of the mechanisms triggered by IL17 to mediate pancreatic tumorigenesis and reveal the avenues for early pancreatic cancer immune interception. See related Spotlight by Lee and Pasca di Magliano, p. 1130.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.