{"title":"用于核磁共振成像的适应性双调谐光控线圈上射频功率放大器。","authors":"Natalia Gudino","doi":"10.1109/TBCAS.2024.3403093","DOIUrl":null,"url":null,"abstract":"<p><p>An adaptable optically controlled RF power amplifier (RFPA) is presented for direct implementation on the Magnetic Resonance Imaging (MRI) transmit coil. Operation at <sup>1</sup>H and multiple X-nuclei frequencies for 7T MRI was demonstrated through the automated tuning of an effective voltage-modulated inductor located in the gate driver circuit of the FET switches in the different amplification stages. Through this automated tuning the amplifier can be adapted from the control to operate at the selected <sup>1</sup>H and X-nuclei frequency in a multinuclear MRI study. Bench and MRI data acquired with the adaptable dual-tuned on-coil RFPA is presented. This technology should allow a simpler, more efficient and versatile implementation of the multinuclear multichannel MRI hardware. Ultimately, to extend the research on MRI detectable nuclei that can provide new insights about healthy and diseased tissue.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptable Dual-Tuned Optically Controlled On-Coil RF Power Amplifier for MRI.\",\"authors\":\"Natalia Gudino\",\"doi\":\"10.1109/TBCAS.2024.3403093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An adaptable optically controlled RF power amplifier (RFPA) is presented for direct implementation on the Magnetic Resonance Imaging (MRI) transmit coil. Operation at <sup>1</sup>H and multiple X-nuclei frequencies for 7T MRI was demonstrated through the automated tuning of an effective voltage-modulated inductor located in the gate driver circuit of the FET switches in the different amplification stages. Through this automated tuning the amplifier can be adapted from the control to operate at the selected <sup>1</sup>H and X-nuclei frequency in a multinuclear MRI study. Bench and MRI data acquired with the adaptable dual-tuned on-coil RFPA is presented. This technology should allow a simpler, more efficient and versatile implementation of the multinuclear multichannel MRI hardware. Ultimately, to extend the research on MRI detectable nuclei that can provide new insights about healthy and diseased tissue.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2024.3403093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3403093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种可在磁共振成像(MRI)发射线圈上直接实施的可适应光控射频功率放大器(RFPA)。通过对位于不同放大级场效应管开关栅极驱动电路中的有效电压调制电感器进行自动调节,演示了在 7T 磁共振成像中 1H 和多个 X 核频率下的运行情况。通过这种自动调谐,放大器可在多核磁共振成像研究中根据选定的 1H 和 X 核频率进行控制调整。本文介绍了利用可调整的双调谐线圈上 RFPA 获得的工作台和磁共振成像数据。这项技术将使多核多通道磁共振成像硬件的实施更加简单、高效和通用。最终,将扩展核磁共振成像可探测核的研究,为健康和疾病组织提供新的见解。
Adaptable Dual-Tuned Optically Controlled On-Coil RF Power Amplifier for MRI.
An adaptable optically controlled RF power amplifier (RFPA) is presented for direct implementation on the Magnetic Resonance Imaging (MRI) transmit coil. Operation at 1H and multiple X-nuclei frequencies for 7T MRI was demonstrated through the automated tuning of an effective voltage-modulated inductor located in the gate driver circuit of the FET switches in the different amplification stages. Through this automated tuning the amplifier can be adapted from the control to operate at the selected 1H and X-nuclei frequency in a multinuclear MRI study. Bench and MRI data acquired with the adaptable dual-tuned on-coil RFPA is presented. This technology should allow a simpler, more efficient and versatile implementation of the multinuclear multichannel MRI hardware. Ultimately, to extend the research on MRI detectable nuclei that can provide new insights about healthy and diseased tissue.