Jiahui Wang , Sihui Deng , Jun Ma , Junli Hu , Jun Liu
{"title":"在倒置有机光电探测器中用作空穴阻挡层的 n 型聚噻吩","authors":"Jiahui Wang , Sihui Deng , Jun Ma , Junli Hu , Jun Liu","doi":"10.1016/j.giant.2024.100291","DOIUrl":null,"url":null,"abstract":"<div><p>Organic photodetectors (OPDs) own unique advantages such as light weight, flexibility, low production cost, tunable detection wavelength, and thus are promising for a variety of applications. The lack of hole-blocking layer (HBL) materials impedes the reduction of dark current density and the enhancement of the performance of OPDs. Herein, we employed an n-type polythiophene n-PT1 as a HBL material for inverted OPDs. The specific solubility of n-PT1 in <em>o</em>-dichlorobenzene facilitates solution processing and enables multilayer device fabrication. The ultradeep-lying highest occupied molecular orbital energy level ensures a large hole injection barrier between cathode and active layer that suppresses dark current. As a result, compared to the control devices without n-PT1, the inverted OPD devices with n-PT1 as HBL demonstrate a two-order-of-magnitude reduction in dark current density and a one-order-of-magnitude increase in specific detectivity. To the best of our knowledge, this is the first solution processable HBL material for inverted OPDs.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100291"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000559/pdfft?md5=00a8df932071896f4695480d271d09fc&pid=1-s2.0-S2666542524000559-main.pdf","citationCount":"0","resultStr":"{\"title\":\"n-Type polythiophene as a hole-blocking layer in inverted organic photodetectors\",\"authors\":\"Jiahui Wang , Sihui Deng , Jun Ma , Junli Hu , Jun Liu\",\"doi\":\"10.1016/j.giant.2024.100291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Organic photodetectors (OPDs) own unique advantages such as light weight, flexibility, low production cost, tunable detection wavelength, and thus are promising for a variety of applications. The lack of hole-blocking layer (HBL) materials impedes the reduction of dark current density and the enhancement of the performance of OPDs. Herein, we employed an n-type polythiophene n-PT1 as a HBL material for inverted OPDs. The specific solubility of n-PT1 in <em>o</em>-dichlorobenzene facilitates solution processing and enables multilayer device fabrication. The ultradeep-lying highest occupied molecular orbital energy level ensures a large hole injection barrier between cathode and active layer that suppresses dark current. As a result, compared to the control devices without n-PT1, the inverted OPD devices with n-PT1 as HBL demonstrate a two-order-of-magnitude reduction in dark current density and a one-order-of-magnitude increase in specific detectivity. To the best of our knowledge, this is the first solution processable HBL material for inverted OPDs.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"19 \",\"pages\":\"Article 100291\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000559/pdfft?md5=00a8df932071896f4695480d271d09fc&pid=1-s2.0-S2666542524000559-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000559\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000559","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
n-Type polythiophene as a hole-blocking layer in inverted organic photodetectors
Organic photodetectors (OPDs) own unique advantages such as light weight, flexibility, low production cost, tunable detection wavelength, and thus are promising for a variety of applications. The lack of hole-blocking layer (HBL) materials impedes the reduction of dark current density and the enhancement of the performance of OPDs. Herein, we employed an n-type polythiophene n-PT1 as a HBL material for inverted OPDs. The specific solubility of n-PT1 in o-dichlorobenzene facilitates solution processing and enables multilayer device fabrication. The ultradeep-lying highest occupied molecular orbital energy level ensures a large hole injection barrier between cathode and active layer that suppresses dark current. As a result, compared to the control devices without n-PT1, the inverted OPD devices with n-PT1 as HBL demonstrate a two-order-of-magnitude reduction in dark current density and a one-order-of-magnitude increase in specific detectivity. To the best of our knowledge, this is the first solution processable HBL material for inverted OPDs.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.