氢脆对氢经济性 Zr-2.5%Nb 压力管材料的影响

Ram Niwas Singh
{"title":"氢脆对氢经济性 Zr-2.5%Nb 压力管材料的影响","authors":"Ram Niwas Singh","doi":"10.1016/j.prostr.2024.05.062","DOIUrl":null,"url":null,"abstract":"<div><p>In order to mitigate the effect of global warming and climate change by reducing CO<sub>2</sub> emission, clean energy options are being explored. Hydrogen generation using renewable energy like solar and wind is one of the clean energy options being considered. Four pillars of hydrogen economy are hydrogen generation, storage, transportation and consumption. The overall life cycle cost of these technologies will depend on the endurance of the material of construction used. Hydrogen is known to cause embrittlement in steels and in hydride forming metals, which can lead to early failure of the components used in hydrogen economy. The overall life cycle cost of these technologies can be significantly reduced if the operating parameters are so chosen to avoid susceptibility to hydrogen/hydride embrittlement or use materials, which are resistant to hydrogen/hydride embrittlement. Hence, investigation of the hydrogen/hydride embrittlement of the materials used during the hydrogen production, storage and transportation has to be in sync with technologies related to hydrogen energy. Significant work has been reported on hydrogen/hydride embrittlement of structural materials such as high strength steels, Ti-alloys, Zr-alloys, Nb-alloys used in power and process industries. The knowhow of the hydrogen/hydride embrittlement mechanisms of these materials will be of immense help in understanding the hydrogen/hydride embrittlement of newer materials of construction used in hydrogen systems. The mechanisms of hydrogen and hydride embrittlement will be discussed.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452321624004918/pdf?md5=1bb66083d0e3e4b0f2d7729690b243f4&pid=1-s2.0-S2452321624004918-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of Hydrogen Embrittlement on Hydrogen Economy Zr-2.5%Nb Pressure Tube Material\",\"authors\":\"Ram Niwas Singh\",\"doi\":\"10.1016/j.prostr.2024.05.062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to mitigate the effect of global warming and climate change by reducing CO<sub>2</sub> emission, clean energy options are being explored. Hydrogen generation using renewable energy like solar and wind is one of the clean energy options being considered. Four pillars of hydrogen economy are hydrogen generation, storage, transportation and consumption. The overall life cycle cost of these technologies will depend on the endurance of the material of construction used. Hydrogen is known to cause embrittlement in steels and in hydride forming metals, which can lead to early failure of the components used in hydrogen economy. The overall life cycle cost of these technologies can be significantly reduced if the operating parameters are so chosen to avoid susceptibility to hydrogen/hydride embrittlement or use materials, which are resistant to hydrogen/hydride embrittlement. Hence, investigation of the hydrogen/hydride embrittlement of the materials used during the hydrogen production, storage and transportation has to be in sync with technologies related to hydrogen energy. Significant work has been reported on hydrogen/hydride embrittlement of structural materials such as high strength steels, Ti-alloys, Zr-alloys, Nb-alloys used in power and process industries. The knowhow of the hydrogen/hydride embrittlement mechanisms of these materials will be of immense help in understanding the hydrogen/hydride embrittlement of newer materials of construction used in hydrogen systems. The mechanisms of hydrogen and hydride embrittlement will be discussed.</p></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452321624004918/pdf?md5=1bb66083d0e3e4b0f2d7729690b243f4&pid=1-s2.0-S2452321624004918-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321624004918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321624004918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了通过减少二氧化碳排放来缓解全球变暖和气候变化的影响,人们正在探索清洁能源方案。利用太阳能和风能等可再生能源生产氢气就是正在考虑的清洁能源方案之一。氢经济的四大支柱是制氢、储氢、运输和消费。这些技术的整体生命周期成本将取决于所用建筑材料的耐久性。众所周知,氢会导致钢和氢化物形成金属脆化,这可能会导致氢经济中使用的部件早期失效。如果选择的运行参数能避免氢/氢化物脆化或使用耐氢/氢化物脆化的材料,这些技术的整体生命周期成本就能大大降低。因此,氢气生产、储存和运输过程中所用材料的氢/酐脆性研究必须与氢能相关技术同步进行。关于结构材料的氢/氢脆性,如电力和加工工业中使用的高强度钢、钛合金、锆合金和铌合金,已有大量研究报道。掌握这些材料的氢/氢化物脆化机理,对了解氢系统中使用的新型建筑材料的氢/氢化物脆化有很大帮助。本文将讨论氢脆和氢化物脆化的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Hydrogen Embrittlement on Hydrogen Economy Zr-2.5%Nb Pressure Tube Material

In order to mitigate the effect of global warming and climate change by reducing CO2 emission, clean energy options are being explored. Hydrogen generation using renewable energy like solar and wind is one of the clean energy options being considered. Four pillars of hydrogen economy are hydrogen generation, storage, transportation and consumption. The overall life cycle cost of these technologies will depend on the endurance of the material of construction used. Hydrogen is known to cause embrittlement in steels and in hydride forming metals, which can lead to early failure of the components used in hydrogen economy. The overall life cycle cost of these technologies can be significantly reduced if the operating parameters are so chosen to avoid susceptibility to hydrogen/hydride embrittlement or use materials, which are resistant to hydrogen/hydride embrittlement. Hence, investigation of the hydrogen/hydride embrittlement of the materials used during the hydrogen production, storage and transportation has to be in sync with technologies related to hydrogen energy. Significant work has been reported on hydrogen/hydride embrittlement of structural materials such as high strength steels, Ti-alloys, Zr-alloys, Nb-alloys used in power and process industries. The knowhow of the hydrogen/hydride embrittlement mechanisms of these materials will be of immense help in understanding the hydrogen/hydride embrittlement of newer materials of construction used in hydrogen systems. The mechanisms of hydrogen and hydride embrittlement will be discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Editorial Editorial Preface Editorial Strain measurement consistency of distributed fiber optic sensors for monitoring composite structures under various loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1