太阳能静止海水淡化系统斜墙下的非稳定薄膜冷凝现象

Masoud Mohammadi, Shidvash Vakilipour, Ramtin Hekmatkhah
{"title":"太阳能静止海水淡化系统斜墙下的非稳定薄膜冷凝现象","authors":"Masoud Mohammadi,&nbsp;Shidvash Vakilipour,&nbsp;Ramtin Hekmatkhah","doi":"10.1016/j.icheatmasstransfer.2024.107632","DOIUrl":null,"url":null,"abstract":"<div><p>Transient interfacial heat and mass transfer is investigated for film-wise condensation underneath the inclined wall of a solar desalination system developing a fully coupled arbitrary Lagrangian-Eulerian interface tracking (ALE-IT) algorithm. Evolution of solitary and capillary waves shows significant effects on the condensation rate of a condensate falling film. The influence of wall length, wall inclination angle, wall-vapor temperature difference, and vapor temperature oscillation are determined on the interfacial instabilities to investigate the condensation characteristics of a solar desalination system. It is shown that the length of the wall does not affect the onset of interfacial instability. However, increasing the length of the wall can effectively enhance the total condensation rate as a result of film waviness. Among the studied parameters, the wall-vapor temperature difference has the highest effect on the average mass flux. Each <span><math><msup><mn>10</mn><mo>°</mo></msup><mi>C</mi></math></span> increment in the vapor temperature can increase mass flow rate from 17% to 27%. At wall-vapor diference of 50°C, the increment in frequency of interfacial temperature oscillation increases the condensation rate up to 11%. Furthermore, each <span><math><msup><mn>5</mn><mo>°</mo></msup></math></span> decrease in inclination angle from the horizon can enhance the condensation rate between 3% to 8%.</p></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady film condensation underneath the inclined wall of a solar still desalination system\",\"authors\":\"Masoud Mohammadi,&nbsp;Shidvash Vakilipour,&nbsp;Ramtin Hekmatkhah\",\"doi\":\"10.1016/j.icheatmasstransfer.2024.107632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Transient interfacial heat and mass transfer is investigated for film-wise condensation underneath the inclined wall of a solar desalination system developing a fully coupled arbitrary Lagrangian-Eulerian interface tracking (ALE-IT) algorithm. Evolution of solitary and capillary waves shows significant effects on the condensation rate of a condensate falling film. The influence of wall length, wall inclination angle, wall-vapor temperature difference, and vapor temperature oscillation are determined on the interfacial instabilities to investigate the condensation characteristics of a solar desalination system. It is shown that the length of the wall does not affect the onset of interfacial instability. However, increasing the length of the wall can effectively enhance the total condensation rate as a result of film waviness. Among the studied parameters, the wall-vapor temperature difference has the highest effect on the average mass flux. Each <span><math><msup><mn>10</mn><mo>°</mo></msup><mi>C</mi></math></span> increment in the vapor temperature can increase mass flow rate from 17% to 27%. At wall-vapor diference of 50°C, the increment in frequency of interfacial temperature oscillation increases the condensation rate up to 11%. Furthermore, each <span><math><msup><mn>5</mn><mo>°</mo></msup></math></span> decrease in inclination angle from the horizon can enhance the condensation rate between 3% to 8%.</p></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193324003944\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324003944","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

采用完全耦合的任意拉格朗日-欧勒界面跟踪(ALE-IT)算法,研究了太阳能海水淡化系统倾斜壁下薄膜冷凝的瞬态界面传热和传质。孤波和毛细管波的演变对冷凝水降膜的冷凝速率有显著影响。为研究太阳能海水淡化系统的冷凝特性,确定了壁长、壁倾角、壁-蒸汽温差和蒸汽温度振荡对界面不稳定性的影响。结果表明,壁的长度不会影响界面不稳定性的发生。然而,由于薄膜的波浪状,增加壁长可以有效提高总冷凝速率。在所研究的参数中,壁面-蒸汽温差对平均质量通量的影响最大。蒸汽温度每增加 10°C 可使质量流量从 17% 增加到 27%。在壁面-蒸汽温差为 50°C 时,界面温度振荡频率的增加可使冷凝速率增加 11%。此外,与地平线的倾角每减少 5°,凝结率可提高 3% 至 8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsteady film condensation underneath the inclined wall of a solar still desalination system

Transient interfacial heat and mass transfer is investigated for film-wise condensation underneath the inclined wall of a solar desalination system developing a fully coupled arbitrary Lagrangian-Eulerian interface tracking (ALE-IT) algorithm. Evolution of solitary and capillary waves shows significant effects on the condensation rate of a condensate falling film. The influence of wall length, wall inclination angle, wall-vapor temperature difference, and vapor temperature oscillation are determined on the interfacial instabilities to investigate the condensation characteristics of a solar desalination system. It is shown that the length of the wall does not affect the onset of interfacial instability. However, increasing the length of the wall can effectively enhance the total condensation rate as a result of film waviness. Among the studied parameters, the wall-vapor temperature difference has the highest effect on the average mass flux. Each 10°C increment in the vapor temperature can increase mass flow rate from 17% to 27%. At wall-vapor diference of 50°C, the increment in frequency of interfacial temperature oscillation increases the condensation rate up to 11%. Furthermore, each 5° decrease in inclination angle from the horizon can enhance the condensation rate between 3% to 8%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
期刊最新文献
Numerical analysis on heat transfer of porous wick flat micro heat pipe under various operating conditions Insight into mixing performance of bionic fractal baffle micromixers based on Murray's Law Numerical study on formation characteristics of particle-crystal mixed fouling in the heat exchanger tube A compact open boundary treatment for a pure thermal plume by direct numerical simulation Prediction of heat transfer characteristics and energy efficiency of a PVT solar collector with corrugated-tube absorber using artificial neural network and group method data handling models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1