Inime I. Udoh , Okpo O. Ekerenam , Enobong F. Daniel , Alexander I. Ikeuba , Demian I. Njoku , Sharafadeen K. Kolawole , Ini-Ibehe N. Etim , Wilfred Emori , Chigoziri N. Njoku , Iniobong P. Etim , Paul C. Uzoma
{"title":"由多孔基质纳米/微容器调制的防腐有机涂层的研究进展","authors":"Inime I. Udoh , Okpo O. Ekerenam , Enobong F. Daniel , Alexander I. Ikeuba , Demian I. Njoku , Sharafadeen K. Kolawole , Ini-Ibehe N. Etim , Wilfred Emori , Chigoziri N. Njoku , Iniobong P. Etim , Paul C. Uzoma","doi":"10.1016/j.cis.2024.103209","DOIUrl":null,"url":null,"abstract":"<div><p>The durability and functionality of many metallic structures are seriously threatened by corrosion, which makes the development of anticorrosive coatings imperative. This state-of-the-art survey explores the recent developments in the field of anticorrosive organic coatings modulated by innovations involving nano/microcontainers with porous matrices. The integration of these cutting-edge delivery systems seeks to improve the protective properties of coatings by enabling controlled release, extended durability, targeted application of corrosion inhibitors, and can be <em>co</em>-constructed to achieve defect filling by polymeric materials. The major highlight of this review is an in-depth analysis of the functionalities provided by porous nano/microcontainers in the active protection and self-healing of anticorrosive coatings, including their performance evaluation. In one case, after 20 days of immersion in 0.1 M NaCl, a scratched coating containing mesoporous silica nanoparticles loaded with an inhibitor benzotriazole and shelled with polydopamine (MSNs-BTA@PDA) exhibited coating restoration indicated by a sustained corrosion resistance rise over an extended period monitored by impedance values at 0.01 Hz frequency, rising from 8.3 × 10<sup>4</sup> to 7.0 × 10<sup>5</sup> Ω cm<sup>2</sup>, a trend assigned to active protection by the release of inhibitors and self-healing capabilities. Additionally, some functions related to anti-fouling and heat preservation by nano/microcontainers are highlighted. Based on the literature survey, some desirable properties, current challenges, and prospects of anticorrosive coatings doped with nano/microcontainers have been summarized. The knowledge gained from this survey will shape future research directions and applications in a variety of industrial areas, in addition to advancing smart corrosion prevention technology.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"330 ","pages":"Article 103209"},"PeriodicalIF":15.9000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624001325/pdfft?md5=2f49dad99c20e0224189d1b97b343590&pid=1-s2.0-S0001868624001325-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Developments in anticorrosive organic coatings modulated by nano/microcontainers with porous matrices\",\"authors\":\"Inime I. Udoh , Okpo O. Ekerenam , Enobong F. Daniel , Alexander I. Ikeuba , Demian I. Njoku , Sharafadeen K. Kolawole , Ini-Ibehe N. Etim , Wilfred Emori , Chigoziri N. Njoku , Iniobong P. Etim , Paul C. Uzoma\",\"doi\":\"10.1016/j.cis.2024.103209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The durability and functionality of many metallic structures are seriously threatened by corrosion, which makes the development of anticorrosive coatings imperative. This state-of-the-art survey explores the recent developments in the field of anticorrosive organic coatings modulated by innovations involving nano/microcontainers with porous matrices. The integration of these cutting-edge delivery systems seeks to improve the protective properties of coatings by enabling controlled release, extended durability, targeted application of corrosion inhibitors, and can be <em>co</em>-constructed to achieve defect filling by polymeric materials. The major highlight of this review is an in-depth analysis of the functionalities provided by porous nano/microcontainers in the active protection and self-healing of anticorrosive coatings, including their performance evaluation. In one case, after 20 days of immersion in 0.1 M NaCl, a scratched coating containing mesoporous silica nanoparticles loaded with an inhibitor benzotriazole and shelled with polydopamine (MSNs-BTA@PDA) exhibited coating restoration indicated by a sustained corrosion resistance rise over an extended period monitored by impedance values at 0.01 Hz frequency, rising from 8.3 × 10<sup>4</sup> to 7.0 × 10<sup>5</sup> Ω cm<sup>2</sup>, a trend assigned to active protection by the release of inhibitors and self-healing capabilities. Additionally, some functions related to anti-fouling and heat preservation by nano/microcontainers are highlighted. Based on the literature survey, some desirable properties, current challenges, and prospects of anticorrosive coatings doped with nano/microcontainers have been summarized. The knowledge gained from this survey will shape future research directions and applications in a variety of industrial areas, in addition to advancing smart corrosion prevention technology.</p></div>\",\"PeriodicalId\":239,\"journal\":{\"name\":\"Advances in Colloid and Interface Science\",\"volume\":\"330 \",\"pages\":\"Article 103209\"},\"PeriodicalIF\":15.9000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001868624001325/pdfft?md5=2f49dad99c20e0224189d1b97b343590&pid=1-s2.0-S0001868624001325-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001868624001325\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624001325","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Developments in anticorrosive organic coatings modulated by nano/microcontainers with porous matrices
The durability and functionality of many metallic structures are seriously threatened by corrosion, which makes the development of anticorrosive coatings imperative. This state-of-the-art survey explores the recent developments in the field of anticorrosive organic coatings modulated by innovations involving nano/microcontainers with porous matrices. The integration of these cutting-edge delivery systems seeks to improve the protective properties of coatings by enabling controlled release, extended durability, targeted application of corrosion inhibitors, and can be co-constructed to achieve defect filling by polymeric materials. The major highlight of this review is an in-depth analysis of the functionalities provided by porous nano/microcontainers in the active protection and self-healing of anticorrosive coatings, including their performance evaluation. In one case, after 20 days of immersion in 0.1 M NaCl, a scratched coating containing mesoporous silica nanoparticles loaded with an inhibitor benzotriazole and shelled with polydopamine (MSNs-BTA@PDA) exhibited coating restoration indicated by a sustained corrosion resistance rise over an extended period monitored by impedance values at 0.01 Hz frequency, rising from 8.3 × 104 to 7.0 × 105 Ω cm2, a trend assigned to active protection by the release of inhibitors and self-healing capabilities. Additionally, some functions related to anti-fouling and heat preservation by nano/microcontainers are highlighted. Based on the literature survey, some desirable properties, current challenges, and prospects of anticorrosive coatings doped with nano/microcontainers have been summarized. The knowledge gained from this survey will shape future research directions and applications in a variety of industrial areas, in addition to advancing smart corrosion prevention technology.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.