{"title":"采用鲁棒内部模型控制方法实现带夹层反向间隙系统的位置控制","authors":"Yoav Vered , Stephen J. Elliott","doi":"10.1016/j.mechatronics.2024.103195","DOIUrl":null,"url":null,"abstract":"<div><p>This paper describes the design of a robust controller for position control in systems with sandwiched backlash. The backlash, which is nonsmooth and nonlinear, is inevitable in the operation of many systems, but it can have destructive effects on the stability and performance of feedback systems. In this work, a robust controller is designed using a modified linear internal model control framework. Different controller architectures are considered and compared based on an experimental case study. The experimental testbased is composed of a three-platform structure driven by a stepper motor. The backlash is introduced into the system in a non-destructive and controllable manner by closing an internal nonlinear feedback loop around the stepper motor. The robustness of the designed controller to a large amount of backlash is verified experimentally, and while the stability is maintained, some residual vibrations are observed. The effects on the residual vibration levels of including nonlinear elements in the controller and changing the controller's settling time are also examined experimentally. The robustness to changes and mismodelling of the linear system, with and without the backlash, is described, as is the tracking of a smooth sinusoidal command signal with a growing amount of backlash. Based on the case study, it is concluded that combining the linear internal model control design method with a small dead zone results in a highly robust controller both with respect to the backlash and to changes in the linear system, which ensure stability and good performance. The required robustness is achieved by tuning the controller's settling time and the dead zone width parameters.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"102 ","pages":"Article 103195"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0957415824000606/pdfft?md5=8d9fe83f13805d368401b4c0050205af&pid=1-s2.0-S0957415824000606-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Robust internal model control approach for position control of systems with sandwiched backlash\",\"authors\":\"Yoav Vered , Stephen J. Elliott\",\"doi\":\"10.1016/j.mechatronics.2024.103195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper describes the design of a robust controller for position control in systems with sandwiched backlash. The backlash, which is nonsmooth and nonlinear, is inevitable in the operation of many systems, but it can have destructive effects on the stability and performance of feedback systems. In this work, a robust controller is designed using a modified linear internal model control framework. Different controller architectures are considered and compared based on an experimental case study. The experimental testbased is composed of a three-platform structure driven by a stepper motor. The backlash is introduced into the system in a non-destructive and controllable manner by closing an internal nonlinear feedback loop around the stepper motor. The robustness of the designed controller to a large amount of backlash is verified experimentally, and while the stability is maintained, some residual vibrations are observed. The effects on the residual vibration levels of including nonlinear elements in the controller and changing the controller's settling time are also examined experimentally. The robustness to changes and mismodelling of the linear system, with and without the backlash, is described, as is the tracking of a smooth sinusoidal command signal with a growing amount of backlash. Based on the case study, it is concluded that combining the linear internal model control design method with a small dead zone results in a highly robust controller both with respect to the backlash and to changes in the linear system, which ensure stability and good performance. The required robustness is achieved by tuning the controller's settling time and the dead zone width parameters.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"102 \",\"pages\":\"Article 103195\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000606/pdfft?md5=8d9fe83f13805d368401b4c0050205af&pid=1-s2.0-S0957415824000606-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000606\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000606","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust internal model control approach for position control of systems with sandwiched backlash
This paper describes the design of a robust controller for position control in systems with sandwiched backlash. The backlash, which is nonsmooth and nonlinear, is inevitable in the operation of many systems, but it can have destructive effects on the stability and performance of feedback systems. In this work, a robust controller is designed using a modified linear internal model control framework. Different controller architectures are considered and compared based on an experimental case study. The experimental testbased is composed of a three-platform structure driven by a stepper motor. The backlash is introduced into the system in a non-destructive and controllable manner by closing an internal nonlinear feedback loop around the stepper motor. The robustness of the designed controller to a large amount of backlash is verified experimentally, and while the stability is maintained, some residual vibrations are observed. The effects on the residual vibration levels of including nonlinear elements in the controller and changing the controller's settling time are also examined experimentally. The robustness to changes and mismodelling of the linear system, with and without the backlash, is described, as is the tracking of a smooth sinusoidal command signal with a growing amount of backlash. Based on the case study, it is concluded that combining the linear internal model control design method with a small dead zone results in a highly robust controller both with respect to the backlash and to changes in the linear system, which ensure stability and good performance. The required robustness is achieved by tuning the controller's settling time and the dead zone width parameters.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.