Eunhye Baek, Sen Song, Chang-Ki Baek, Zhao Rong, Luping Shi, Carlo Vittorio Cannistraci
{"title":"视觉运动感知的神经形态树突网络计算与无声突触","authors":"Eunhye Baek, Sen Song, Chang-Ki Baek, Zhao Rong, Luping Shi, Carlo Vittorio Cannistraci","doi":"10.1038/s41928-024-01171-7","DOIUrl":null,"url":null,"abstract":"Neuromorphic technologies typically employ a point neuron model, neglecting the spatiotemporal nature of neuronal computation. Dendritic morphology and synaptic organization are structurally tailored for spatiotemporal information processing, such as visual perception. Here we report a neuromorphic computational model that integrates synaptic organization with dendritic tree-like morphology. Based on the physics of multigate silicon nanowire transistors with ion-doped sol–gel films, our model—termed dendristor—performs dendritic computation at the device and neural-circuit level. The dendristor offers the bioplausible nonlinear integration of excitatory/inhibitory synaptic inputs and silent synapses with diverse spatial distribution dependency, emulating direction selectivity, which is the feature that reacts to signal direction on the dendrite. We also develop a neuromorphic dendritic neural circuit—a network of interconnected dendritic neurons—that serves as a building block for the design of a multilayer network system that emulates three-dimensional spatial motion perception in the retina. A neuromorphic computational model based on multigate silicon nanowire transistors can perform dendritic computation by integrating synaptic organization with dendritic tree-like morphology and can be used to develop a multilayer network system that emulates three-dimensional spatial motion perception in the retina.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromorphic dendritic network computation with silent synapses for visual motion perception\",\"authors\":\"Eunhye Baek, Sen Song, Chang-Ki Baek, Zhao Rong, Luping Shi, Carlo Vittorio Cannistraci\",\"doi\":\"10.1038/s41928-024-01171-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic technologies typically employ a point neuron model, neglecting the spatiotemporal nature of neuronal computation. Dendritic morphology and synaptic organization are structurally tailored for spatiotemporal information processing, such as visual perception. Here we report a neuromorphic computational model that integrates synaptic organization with dendritic tree-like morphology. Based on the physics of multigate silicon nanowire transistors with ion-doped sol–gel films, our model—termed dendristor—performs dendritic computation at the device and neural-circuit level. The dendristor offers the bioplausible nonlinear integration of excitatory/inhibitory synaptic inputs and silent synapses with diverse spatial distribution dependency, emulating direction selectivity, which is the feature that reacts to signal direction on the dendrite. We also develop a neuromorphic dendritic neural circuit—a network of interconnected dendritic neurons—that serves as a building block for the design of a multilayer network system that emulates three-dimensional spatial motion perception in the retina. A neuromorphic computational model based on multigate silicon nanowire transistors can perform dendritic computation by integrating synaptic organization with dendritic tree-like morphology and can be used to develop a multilayer network system that emulates three-dimensional spatial motion perception in the retina.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01171-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01171-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Neuromorphic dendritic network computation with silent synapses for visual motion perception
Neuromorphic technologies typically employ a point neuron model, neglecting the spatiotemporal nature of neuronal computation. Dendritic morphology and synaptic organization are structurally tailored for spatiotemporal information processing, such as visual perception. Here we report a neuromorphic computational model that integrates synaptic organization with dendritic tree-like morphology. Based on the physics of multigate silicon nanowire transistors with ion-doped sol–gel films, our model—termed dendristor—performs dendritic computation at the device and neural-circuit level. The dendristor offers the bioplausible nonlinear integration of excitatory/inhibitory synaptic inputs and silent synapses with diverse spatial distribution dependency, emulating direction selectivity, which is the feature that reacts to signal direction on the dendrite. We also develop a neuromorphic dendritic neural circuit—a network of interconnected dendritic neurons—that serves as a building block for the design of a multilayer network system that emulates three-dimensional spatial motion perception in the retina. A neuromorphic computational model based on multigate silicon nanowire transistors can perform dendritic computation by integrating synaptic organization with dendritic tree-like morphology and can be used to develop a multilayer network system that emulates three-dimensional spatial motion perception in the retina.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.