{"title":"复杂混合物中基于荧光的条形码技术的新发展","authors":"Thorsten Hugel","doi":"10.1038/s41565-024-01686-2","DOIUrl":null,"url":null,"abstract":"Combining single-molecule Förster resonance energy transfer (FRET) and fluorescence lifetime information inside an anti-Brownian electrokinetic (ABEL) trap makes it possible to distinguish dozens of biomolecules in a sample mixture. This method enables extensive barcoding of biomolecules with a minimal set of chemical components and opens up a path toward biomolecule quantification in complex mixtures.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 8","pages":"1081-1082"},"PeriodicalIF":38.1000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New dimensions for fluorescence-based barcoding in complex mixtures\",\"authors\":\"Thorsten Hugel\",\"doi\":\"10.1038/s41565-024-01686-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combining single-molecule Förster resonance energy transfer (FRET) and fluorescence lifetime information inside an anti-Brownian electrokinetic (ABEL) trap makes it possible to distinguish dozens of biomolecules in a sample mixture. This method enables extensive barcoding of biomolecules with a minimal set of chemical components and opens up a path toward biomolecule quantification in complex mixtures.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"19 8\",\"pages\":\"1081-1082\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-024-01686-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01686-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
New dimensions for fluorescence-based barcoding in complex mixtures
Combining single-molecule Förster resonance energy transfer (FRET) and fluorescence lifetime information inside an anti-Brownian electrokinetic (ABEL) trap makes it possible to distinguish dozens of biomolecules in a sample mixture. This method enables extensive barcoding of biomolecules with a minimal set of chemical components and opens up a path toward biomolecule quantification in complex mixtures.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.