真空悬浮和芯片运动控制

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-06-06 DOI:10.1038/s41565-024-01677-3
Bruno Melo, Marc T. Cuairan, Grégoire F. M. Tomassi, Nadine Meyer, Romain Quidant
{"title":"真空悬浮和芯片运动控制","authors":"Bruno Melo, Marc T. Cuairan, Grégoire F. M. Tomassi, Nadine Meyer, Romain Quidant","doi":"10.1038/s41565-024-01677-3","DOIUrl":null,"url":null,"abstract":"By isolating from the environment and precisely controlling mesoscopic objects, levitation in vacuum has evolved into a versatile technique that has already benefited diverse scientific directions, from force sensing and thermodynamics to materials science and chemistry. It also holds great promise for advancing the study of quantum mechanics in the unexplored macroscopic regime. However, most current levitation platforms are complex and bulky. Recent efforts in miniaturization of vacuum levitation set-ups have comprised electrostatic and optical traps, but robustness is still a concern for integration into confined settings, such as cryostats or portable devices. Here we show levitation and motion control in high vacuum of a silica nanoparticle at the surface of a hybrid optical–electrostatic chip. By combining fibre-based optical trapping and sensitive position detection with cold damping through planar electrodes, we cool the particle motion to a few hundred phonons. We envisage that our fully integrated platform is the starting point for on-chip devices combining integrated photonics and nanophotonics with precisely engineered electric potentials, enhancing control over the particle motion towards complex state preparation and read-out. By combining fibre-based trapping and position detection with cold damping through planar electrodes, cooling of a silica nanoparticle particle motion to a few hundred phonons on a chip is achieved.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01677-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Vacuum levitation and motion control on chip\",\"authors\":\"Bruno Melo, Marc T. Cuairan, Grégoire F. M. Tomassi, Nadine Meyer, Romain Quidant\",\"doi\":\"10.1038/s41565-024-01677-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By isolating from the environment and precisely controlling mesoscopic objects, levitation in vacuum has evolved into a versatile technique that has already benefited diverse scientific directions, from force sensing and thermodynamics to materials science and chemistry. It also holds great promise for advancing the study of quantum mechanics in the unexplored macroscopic regime. However, most current levitation platforms are complex and bulky. Recent efforts in miniaturization of vacuum levitation set-ups have comprised electrostatic and optical traps, but robustness is still a concern for integration into confined settings, such as cryostats or portable devices. Here we show levitation and motion control in high vacuum of a silica nanoparticle at the surface of a hybrid optical–electrostatic chip. By combining fibre-based optical trapping and sensitive position detection with cold damping through planar electrodes, we cool the particle motion to a few hundred phonons. We envisage that our fully integrated platform is the starting point for on-chip devices combining integrated photonics and nanophotonics with precisely engineered electric potentials, enhancing control over the particle motion towards complex state preparation and read-out. By combining fibre-based trapping and position detection with cold damping through planar electrodes, cooling of a silica nanoparticle particle motion to a few hundred phonons on a chip is achieved.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41565-024-01677-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-024-01677-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01677-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过与环境隔离并精确控制介观物体,真空悬浮技术已发展成为一种多用途技术,从力传感和热力学到材料科学和化学等不同科学方向都已从中受益。它还为推动尚未探索的宏观体系中的量子力学研究带来了巨大希望。然而,目前大多数悬浮平台都非常复杂和笨重。最近在真空悬浮装置微型化方面所做的努力包括静电和光学陷阱,但要将其集成到低温恒温器或便携式设备等密闭环境中,其坚固性仍是一个问题。在这里,我们展示了在高真空条件下对位于光学-静电混合芯片表面的二氧化硅纳米粒子的悬浮和运动控制。通过将基于光纤的光学捕获和灵敏位置检测与通过平面电极的冷阻尼相结合,我们将粒子运动冷却到几百个声子。我们设想,我们的全集成平台将成为片上设备的起点,将集成光子学和纳米光子学与精确设计的电势相结合,加强对粒子运动的控制,从而实现复杂状态的制备和读出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vacuum levitation and motion control on chip
By isolating from the environment and precisely controlling mesoscopic objects, levitation in vacuum has evolved into a versatile technique that has already benefited diverse scientific directions, from force sensing and thermodynamics to materials science and chemistry. It also holds great promise for advancing the study of quantum mechanics in the unexplored macroscopic regime. However, most current levitation platforms are complex and bulky. Recent efforts in miniaturization of vacuum levitation set-ups have comprised electrostatic and optical traps, but robustness is still a concern for integration into confined settings, such as cryostats or portable devices. Here we show levitation and motion control in high vacuum of a silica nanoparticle at the surface of a hybrid optical–electrostatic chip. By combining fibre-based optical trapping and sensitive position detection with cold damping through planar electrodes, we cool the particle motion to a few hundred phonons. We envisage that our fully integrated platform is the starting point for on-chip devices combining integrated photonics and nanophotonics with precisely engineered electric potentials, enhancing control over the particle motion towards complex state preparation and read-out. By combining fibre-based trapping and position detection with cold damping through planar electrodes, cooling of a silica nanoparticle particle motion to a few hundred phonons on a chip is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
3D printed photonic crystals with a complete bandgap in the visible range Earth-abundant Li-ion cathode materials with nanoengineered microstructures Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes A cuproptosis nanocapsule for cancer radiotherapy Printing of 3D photonic crystals in titania with complete bandgap across the visible spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1