配体工程实现了钾离子电池 KVPO4F 阴极的快速动力学特性

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-06-06 DOI:10.1021/acsenergylett.4c01052
Yixin Zhu, Boning Ou, Chongwei Gao, Yueteng Gao, Biao Zhang, Feiyu Kang, Dengyun Zhai
{"title":"配体工程实现了钾离子电池 KVPO4F 阴极的快速动力学特性","authors":"Yixin Zhu, Boning Ou, Chongwei Gao, Yueteng Gao, Biao Zhang, Feiyu Kang, Dengyun Zhai","doi":"10.1021/acsenergylett.4c01052","DOIUrl":null,"url":null,"abstract":"Vanadium-based fluoride phosphate polyanionic compounds are the most competitive candidates for cathode materials in potassium-ion batteries (PIBs). However, they have faced the long-standing obstacle of poor intrinsic kinetics that has yet to be overcome, ascribed to the unique electron transfer pattern in the covalently bonded structures. Herein, by adjusting the coordinated circumstance of the V octahedron via the introduction of a large-sized and weak-field ligand Cl<sup>–</sup>, we synthesized KVPO<sub>4</sub>F<sub>0.9</sub>Cl<sub>0.1</sub> (KVPFCl) with fast kinetics. A distorted octahedral symmetry with the larger Cl<sup>–</sup> expands the lattice structure, facilitating K<sup>+</sup> ion diffusion in the KVPFCl material. Furthermore, accelerated electronic kinetics is achieved via the stronger electron donor Cl<sup>–</sup>, which stimulates the hybridization of the V 3d orbital and the 2p/3p orbitals of the ligands and narrows the crystal field splitting energy. Therefore, the as-prepared KVPFCl has a high rate capability and capacity retention. Our results provide prospective insights into achieving fast kinetics in vanadium fluorophosphate polyanionic materials for PIBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ligand Engineering Enables Fast Kinetics of KVPO4F Cathode for Potassium-Ion Batteries\",\"authors\":\"Yixin Zhu, Boning Ou, Chongwei Gao, Yueteng Gao, Biao Zhang, Feiyu Kang, Dengyun Zhai\",\"doi\":\"10.1021/acsenergylett.4c01052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vanadium-based fluoride phosphate polyanionic compounds are the most competitive candidates for cathode materials in potassium-ion batteries (PIBs). However, they have faced the long-standing obstacle of poor intrinsic kinetics that has yet to be overcome, ascribed to the unique electron transfer pattern in the covalently bonded structures. Herein, by adjusting the coordinated circumstance of the V octahedron via the introduction of a large-sized and weak-field ligand Cl<sup>–</sup>, we synthesized KVPO<sub>4</sub>F<sub>0.9</sub>Cl<sub>0.1</sub> (KVPFCl) with fast kinetics. A distorted octahedral symmetry with the larger Cl<sup>–</sup> expands the lattice structure, facilitating K<sup>+</sup> ion diffusion in the KVPFCl material. Furthermore, accelerated electronic kinetics is achieved via the stronger electron donor Cl<sup>–</sup>, which stimulates the hybridization of the V 3d orbital and the 2p/3p orbitals of the ligands and narrows the crystal field splitting energy. Therefore, the as-prepared KVPFCl has a high rate capability and capacity retention. Our results provide prospective insights into achieving fast kinetics in vanadium fluorophosphate polyanionic materials for PIBs.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c01052\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01052","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钒基氟化物磷酸多阴离子化合物是钾离子电池(PIB)阴极材料中最具竞争力的候选材料。然而,由于共价键结构中独特的电子传递模式,它们长期以来一直面临着内在动力学性能不佳的障碍,至今仍有待克服。在此,我们通过引入大尺寸弱场配体 Cl- 来调整 V 八面体的配位情况,合成了具有快速动力学特性的 KVPO4F0.9Cl0.1 (KVPFCl)。大尺寸 Cl- 的扭曲八面体对称性扩展了晶格结构,促进了 K+ 离子在 KVPFCl 材料中的扩散。此外,较强的电子供体 Cl- 可加速电子动力学,从而刺激配体的 V 3d 轨道和 2p/3p 轨道杂化,缩小晶场分裂能。因此,制备的 KVPFCl 具有较高的速率能力和容量保持能力。我们的研究结果为实现用于 PIB 的氟磷酸钒多阴离子材料的快速动力学提供了前瞻性见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ligand Engineering Enables Fast Kinetics of KVPO4F Cathode for Potassium-Ion Batteries
Vanadium-based fluoride phosphate polyanionic compounds are the most competitive candidates for cathode materials in potassium-ion batteries (PIBs). However, they have faced the long-standing obstacle of poor intrinsic kinetics that has yet to be overcome, ascribed to the unique electron transfer pattern in the covalently bonded structures. Herein, by adjusting the coordinated circumstance of the V octahedron via the introduction of a large-sized and weak-field ligand Cl, we synthesized KVPO4F0.9Cl0.1 (KVPFCl) with fast kinetics. A distorted octahedral symmetry with the larger Cl expands the lattice structure, facilitating K+ ion diffusion in the KVPFCl material. Furthermore, accelerated electronic kinetics is achieved via the stronger electron donor Cl, which stimulates the hybridization of the V 3d orbital and the 2p/3p orbitals of the ligands and narrows the crystal field splitting energy. Therefore, the as-prepared KVPFCl has a high rate capability and capacity retention. Our results provide prospective insights into achieving fast kinetics in vanadium fluorophosphate polyanionic materials for PIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
High Entropy Oxides: Mapping the Landscape from Fundamentals to Future Vistas Ionocovalency of the Central Metal Halide Bond-Dependent Chemical Compatibility of Halide Solid Electrolytes with Li6PS5Cl Using Electron Microscopy to Explore Solar Cell Interfaces: Microstructures, Efficiency, and Stability Operando Raman Gradient Analysis for Temperature-Dependent Electrolyte Characterization Energy-Efficient Perovskite LEDs with Rec. 2020 Compliance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1