{"title":"利用宽带噪声的二分扫频研究中脑对听觉运动的敏感性","authors":"Philip X Joris , Eric Verschooten","doi":"10.1016/j.heares.2024.109066","DOIUrl":null,"url":null,"abstract":"<div><p>Many neurons in the central nucleus of the inferior colliculus (IC) show sensitivity to interaural time differences (ITDs), which is thought to be relayed from the brainstem. However, studies with interaural phase modulation of pure tones showed that IC neurons have a sensitivity to <u>changes</u> in ITD that is not present at the level of the brainstem. This sensitivity has been interpreted as a form of sensitivity to motion.</p><p>A new type of stimulus is used here to study the sensitivity of IC neurons to dynamic changes in ITD, in which broad- or narrowband stimuli are swept through a range of ITDs with arbitrary start-ITD, end-ITD, speed, and direction. Extracellular recordings were obtained under barbiturate anesthesia in the cat. We applied the same analyses as previously introduced for the study of responses to tones.</p><p>We find effects of motion which are similar to those described in response to interaural phase modulation of tones. The size of the effects strongly depended on the motion parameters but was overall smaller than reported for tones. We found that the effects of motion could largely be explained by the temporal response pattern of the neuron such as adaptation and build-up. Our data add to previous evidence questioning true coding of motion at the level of the IC.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"450 ","pages":"Article 109066"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Midbrain sensitivity to auditory motion studied with dichotic sweeps of broadband noise\",\"authors\":\"Philip X Joris , Eric Verschooten\",\"doi\":\"10.1016/j.heares.2024.109066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many neurons in the central nucleus of the inferior colliculus (IC) show sensitivity to interaural time differences (ITDs), which is thought to be relayed from the brainstem. However, studies with interaural phase modulation of pure tones showed that IC neurons have a sensitivity to <u>changes</u> in ITD that is not present at the level of the brainstem. This sensitivity has been interpreted as a form of sensitivity to motion.</p><p>A new type of stimulus is used here to study the sensitivity of IC neurons to dynamic changes in ITD, in which broad- or narrowband stimuli are swept through a range of ITDs with arbitrary start-ITD, end-ITD, speed, and direction. Extracellular recordings were obtained under barbiturate anesthesia in the cat. We applied the same analyses as previously introduced for the study of responses to tones.</p><p>We find effects of motion which are similar to those described in response to interaural phase modulation of tones. The size of the effects strongly depended on the motion parameters but was overall smaller than reported for tones. We found that the effects of motion could largely be explained by the temporal response pattern of the neuron such as adaptation and build-up. Our data add to previous evidence questioning true coding of motion at the level of the IC.</p></div>\",\"PeriodicalId\":12881,\"journal\":{\"name\":\"Hearing Research\",\"volume\":\"450 \",\"pages\":\"Article 109066\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hearing Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378595524001199\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524001199","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Midbrain sensitivity to auditory motion studied with dichotic sweeps of broadband noise
Many neurons in the central nucleus of the inferior colliculus (IC) show sensitivity to interaural time differences (ITDs), which is thought to be relayed from the brainstem. However, studies with interaural phase modulation of pure tones showed that IC neurons have a sensitivity to changes in ITD that is not present at the level of the brainstem. This sensitivity has been interpreted as a form of sensitivity to motion.
A new type of stimulus is used here to study the sensitivity of IC neurons to dynamic changes in ITD, in which broad- or narrowband stimuli are swept through a range of ITDs with arbitrary start-ITD, end-ITD, speed, and direction. Extracellular recordings were obtained under barbiturate anesthesia in the cat. We applied the same analyses as previously introduced for the study of responses to tones.
We find effects of motion which are similar to those described in response to interaural phase modulation of tones. The size of the effects strongly depended on the motion parameters but was overall smaller than reported for tones. We found that the effects of motion could largely be explained by the temporal response pattern of the neuron such as adaptation and build-up. Our data add to previous evidence questioning true coding of motion at the level of the IC.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.