Watcharaporn Thongjoon, K. Aiempanakit, Montri Aiempanakit, Chantana Aiempanakit
{"title":"W 薄膜的退火时间对阳极氧化 WO(_{3}\\) 薄膜的结构和电致变色特性的影响","authors":"Watcharaporn Thongjoon, K. Aiempanakit, Montri Aiempanakit, Chantana Aiempanakit","doi":"10.55713/jmmm.v34i2.1969","DOIUrl":null,"url":null,"abstract":"WO3 films were prepared from annealed W films by anodization and annealing at 450℃ for 1 h. The sputtered W films were annealed before anodization at different times for 0.5 h to 2 h, followed by immediate removal from the furnace (quenching) or slow cooling (cool-down). The WO3 films exhibited a different preferred orientation between the (200) and (222) planes. The morphological structure of the WO3 films depended on the annealing time and cooling features of the W films. The WO3 films for the cool-down condition had smaller grains and more pores than the quenching condition. The WO3 films prepared from annealed W for 1.5 h with cool-down showed maximum transmittance change of 48.20% with the diffusion coefficient of 3.533 x 10-7 cm2∙s‒1. The quenching condition can be improved durability of WO3 films. Therefore, annealing time and cooling conditions can be used to design film properties that are suitable for the electrochromic application.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of annealing times for W films on the structure and electrochromic properties of anodized WO\\\\(_{3}\\\\) films\",\"authors\":\"Watcharaporn Thongjoon, K. Aiempanakit, Montri Aiempanakit, Chantana Aiempanakit\",\"doi\":\"10.55713/jmmm.v34i2.1969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WO3 films were prepared from annealed W films by anodization and annealing at 450℃ for 1 h. The sputtered W films were annealed before anodization at different times for 0.5 h to 2 h, followed by immediate removal from the furnace (quenching) or slow cooling (cool-down). The WO3 films exhibited a different preferred orientation between the (200) and (222) planes. The morphological structure of the WO3 films depended on the annealing time and cooling features of the W films. The WO3 films for the cool-down condition had smaller grains and more pores than the quenching condition. The WO3 films prepared from annealed W for 1.5 h with cool-down showed maximum transmittance change of 48.20% with the diffusion coefficient of 3.533 x 10-7 cm2∙s‒1. The quenching condition can be improved durability of WO3 films. Therefore, annealing time and cooling conditions can be used to design film properties that are suitable for the electrochromic application.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v34i2.1969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i2.1969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
溅射的 W 薄膜在阳极化之前经过 0.5 至 2 小时不同时间的退火,然后立即从炉中取出(淬火)或缓慢冷却(降温)。WO3 薄膜在 (200) 和 (222) 平面之间表现出不同的优先取向。WO3 薄膜的形态结构取决于退火时间和 W 薄膜的冷却特征。与淬火条件相比,冷却条件下的 WO3 薄膜具有更小的晶粒和更多的孔隙。由退火 1.5 小时并冷却的 W 制备的 WO3 薄膜显示出 48.20% 的最大透射率变化,扩散系数为 3.533 x 10-7 cm2∙s-1。淬火条件可以提高 WO3 薄膜的耐久性。因此,退火时间和冷却条件可用于设计适合电致变色应用的薄膜特性。
Influence of annealing times for W films on the structure and electrochromic properties of anodized WO\(_{3}\) films
WO3 films were prepared from annealed W films by anodization and annealing at 450℃ for 1 h. The sputtered W films were annealed before anodization at different times for 0.5 h to 2 h, followed by immediate removal from the furnace (quenching) or slow cooling (cool-down). The WO3 films exhibited a different preferred orientation between the (200) and (222) planes. The morphological structure of the WO3 films depended on the annealing time and cooling features of the W films. The WO3 films for the cool-down condition had smaller grains and more pores than the quenching condition. The WO3 films prepared from annealed W for 1.5 h with cool-down showed maximum transmittance change of 48.20% with the diffusion coefficient of 3.533 x 10-7 cm2∙s‒1. The quenching condition can be improved durability of WO3 films. Therefore, annealing time and cooling conditions can be used to design film properties that are suitable for the electrochromic application.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.