利用冷冻干燥和蔗糖浸出联合技术开发孔径可控的聚乳酸/海藻糖多孔支架,用于骨组织工程

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2024-06-04 DOI:10.55713/jmmm.v34i2.1928
Sunisa Singhawannurat, Panuwat Lawtae, C. Rojviriya, Chalermluck Phoovasawat
{"title":"利用冷冻干燥和蔗糖浸出联合技术开发孔径可控的聚乳酸/海藻糖多孔支架,用于骨组织工程","authors":"Sunisa Singhawannurat, Panuwat Lawtae, C. Rojviriya, Chalermluck Phoovasawat","doi":"10.55713/jmmm.v34i2.1928","DOIUrl":null,"url":null,"abstract":"The combination of freeze drying and sucrose leaching technique was employed to fabricate PLA/HA scaffolds with controlled pore size. The influence of the HA content and sucrose size on the scaffold properties was investigated. The fabricated scaffolds showed porous properties with a porosity of 44% to 58% and pore size of 461 μm to 688 μm. The results indicated that the scaffolds possessed favorable porous properties, illustrated by good interconnectivity, appropriate pore size, and suitable porosity. These characteristics were crucial for facilitating bone cell growth and promoting the formation of new tissue within the scaffold structure. The compressive modulus of the scaffolds was examined and found to be in the range of 3.35 MPa to 5.75 MPa. Furthermore, the degradation behavior of the scaffolds was studied for 28 days in a Phosphate Buffered Saline solution. The results showed that the degradation rate was varied in the range of 6% to 14%. The water uptake of the scaffolds exhibited a range between 180% and 200%. Enhancement in water uptake was observed with higher HA content and increased sucrose size. Consequently, the scaffolds developed in this study hold promise as optimal candidates for bone tissue engineering applications.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of PLA/HA porous scaffolds with controlled pore sizes using the combined freeze drying and sucrose leaching technique for bone tissue engineering\",\"authors\":\"Sunisa Singhawannurat, Panuwat Lawtae, C. Rojviriya, Chalermluck Phoovasawat\",\"doi\":\"10.55713/jmmm.v34i2.1928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of freeze drying and sucrose leaching technique was employed to fabricate PLA/HA scaffolds with controlled pore size. The influence of the HA content and sucrose size on the scaffold properties was investigated. The fabricated scaffolds showed porous properties with a porosity of 44% to 58% and pore size of 461 μm to 688 μm. The results indicated that the scaffolds possessed favorable porous properties, illustrated by good interconnectivity, appropriate pore size, and suitable porosity. These characteristics were crucial for facilitating bone cell growth and promoting the formation of new tissue within the scaffold structure. The compressive modulus of the scaffolds was examined and found to be in the range of 3.35 MPa to 5.75 MPa. Furthermore, the degradation behavior of the scaffolds was studied for 28 days in a Phosphate Buffered Saline solution. The results showed that the degradation rate was varied in the range of 6% to 14%. The water uptake of the scaffolds exhibited a range between 180% and 200%. Enhancement in water uptake was observed with higher HA content and increased sucrose size. Consequently, the scaffolds developed in this study hold promise as optimal candidates for bone tissue engineering applications.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v34i2.1928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v34i2.1928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究人员结合冷冻干燥和蔗糖浸出技术,制备了孔径可控的聚乳酸/HA 支架。研究了 HA 含量和蔗糖大小对支架性能的影响。制得的支架具有多孔性,孔隙率为 44% 至 58%,孔径为 461 μm 至 688 μm。结果表明,支架具有良好的多孔特性,如良好的互联性、适当的孔径和合适的孔隙率。这些特性对于促进骨细胞生长和支架结构内新组织的形成至关重要。研究发现,支架的压缩模量在 3.35 兆帕至 5.75 兆帕之间。此外,还研究了支架在磷酸盐缓冲盐溶液中 28 天的降解行为。结果表明,降解率在 6% 到 14% 之间变化。支架的吸水率在 180% 到 200% 之间。随着 HA 含量的提高和蔗糖量的增加,吸水率也随之提高。因此,本研究开发的支架有望成为骨组织工程应用的最佳候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of PLA/HA porous scaffolds with controlled pore sizes using the combined freeze drying and sucrose leaching technique for bone tissue engineering
The combination of freeze drying and sucrose leaching technique was employed to fabricate PLA/HA scaffolds with controlled pore size. The influence of the HA content and sucrose size on the scaffold properties was investigated. The fabricated scaffolds showed porous properties with a porosity of 44% to 58% and pore size of 461 μm to 688 μm. The results indicated that the scaffolds possessed favorable porous properties, illustrated by good interconnectivity, appropriate pore size, and suitable porosity. These characteristics were crucial for facilitating bone cell growth and promoting the formation of new tissue within the scaffold structure. The compressive modulus of the scaffolds was examined and found to be in the range of 3.35 MPa to 5.75 MPa. Furthermore, the degradation behavior of the scaffolds was studied for 28 days in a Phosphate Buffered Saline solution. The results showed that the degradation rate was varied in the range of 6% to 14%. The water uptake of the scaffolds exhibited a range between 180% and 200%. Enhancement in water uptake was observed with higher HA content and increased sucrose size. Consequently, the scaffolds developed in this study hold promise as optimal candidates for bone tissue engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
The effect of printing parameters on the properties of 17-4 PH stainless steel fabricated by material extrusion additive manufacturing Realizing fast plating/stripping of high-performance Zn metal anode with a low Zn loading The mechanochemistry of lanthanum dihydride (LaH\(_{2}\)) with hydrogen (H\(_{2}\)) using the ball-mill process and the effect of oxidation on the resulting products Natural wound dressing films prepared from acetylated starch/κ-carrageenan blend incorporated with mandelic acid Influence of annealing times for W films on the structure and electrochromic properties of anodized WO\(_{3}\) films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1